NASA/CP—1999-209236 SEL-98-002
Software Engineering Laboratory Series

Proceedings of the Twenty-Third Annual
Software Engineering Workshop

Compiled by:
Goddard Space Flight Center

Proceedings of a workshop held

at the Goddard Space Flight Center
Greenbelt, Maryland

December 2-3, 1998

National Aeronautics and
Space Administration

Goddard Space Flight Center
Greenbelt, Maryland 20771

June 1999

INSTRUCTIONS
To advance quickly through files, click on the button that displays both bookmarks and the page, this should be the 2nd button for most users.

Use arrow buttons on toolbar, or scrollbar on right of window to further navigate.

The NASA STI Program Office ... in Profile

Since its founding, NASA has been dedicated to
the advancement of aeronautics and space
science. The NASA Scientific and Technical
Information (STI) Program Office plays a key
part in helping NASA maintain this important
role.

The NASA STI Program Office is operated by
Langley Research Center, the lead center for
NASA's scientific and technical information. The
NASA STI Program Office provides access to
the NASA STI Database, the largest collection of

aeronautical and space science STI in the world.

The Program Office is also NASA'’s institutional
mechanism for disseminating the results of its
research and development activities. These
results are published by NASA in the NASA STI
Report Series, which includes the following
report types:

 TECHNICAL PUBLICATION. Reports of
completed research or a major significant
phase of research that present the results of
NASA programs and include extensive data or
theoretical analysis. Includes compilations of
significant scientific and technical data and
information deemed to be of continuing
reference value. NASA’s counterpart of
peer-reviewed formal professional papers but
has less stringent limitations on manuscript
length and extent of graphic presentations.

« TECHNICAL MEMORANDUM. Scientific
and technical findings that are preliminary or
of specialized interest, e.g., quick release
reports, working papers, and bibliographies
that contain minimal annotation. Does not
contain extensive analysis.

» CONTRACTOR REPORT. Scientific and
technical findings by NASA-sponsored
contractors and grantees.

+ CONFERENCE PUBLICATION. Collected
papers from scientific and technical
conferences, symposia, seminars, or other
meetings sponsored or cosponsored by NAS

* SPECIAL PUBLICATION. Scientific, techni-
cal, or historical information from NASA
programs, projects, and mission, often con-

cerned with subjects having substantial publjic

interest.

e TECHNICAL TRANSLATION.
English-language translations of foreign scie
tific and technical material pertinent to NAS/
mission.

Specialized services that complement the STI
Program Office’s diverse offerings include creg
ing custom thesauri, building customized data-
bases, organizing and publishing research result
even providing videos.

For more information about the NASA STI Pro-
gram Office, see the following:

» Access the NASA STI Program Home Page
http://www.sti.nasa.gov/STI-homepage.html

» E-mail your question via the Internet to
help@sti.nasa.gov

» Fax your guestion to the NASA Access Help
Desk at (301) 621-0134

» Telephone the NASA Access Help Desk at
(301) 621-0390

* Write to:
NASA Access Help Desk
NASA Center for AeroSpace Information
7121 Standard Drive
Hanover, MD 21076-1320

n_
\'S

at

The views and findings expressed
herein are those of the authors and
presenters and do not necessarily
represent the views, estimates, or
policies of the SEL. All material
herein is reprinted as submitted by
authors and presenters, who are
solely responsible for compliance
with any relevant copyright, patent,
or other proprietary restrictions.

Available from:

NASA Center for AeroSpace Information National Technical Information Service
7121 Standard Drive 5285 Port Royal Road
Hanover, MD 21076-1320 Springfield, VA 22161

Price Code: A17 Price Code: A10

FOREWORD

The Software Engineering Laboratory (SEL) is an organization sponsored by the National
Aeronautics and Space Administration/Goddard Space Flight Center (NASA/GSFC) and created

to investigate the effectiveness of software engineering technologies when applied to the

development of applications software. The SEL was created in 1976 and has three primary

organizational members:

NASA/GSFC, Information Systems Center
The University of Maryland, Department of Computer Science
Computer Sciences Corporation, Development and Sustaining Engineering Organization

The goals of the SEL are (1) to understand the software development process in the GSFC
environment; (2) to measure the effects of various methodologies, tools, and models on this
process; and (3) to identify and then to apply successful development practices. The activities,
findings, and recommendations of the SEL are recorded in the Software Engineering Laboratory
Series, a continuing series of reports that includes this document.

Documents from the Software Engineering Laboratory Series can be obtained via the SEL
homepage at:

http://sel.gsfc.nasa.gov/

or by writing to:
Systems Integration and Engineering Branch
Code 581
Goddard Space Flight Center
Greenbelt, Maryland 20771

CONTENTS

Page

Materials for each session include the viewgraphs
presented at the workshop and a supporting paper
submitted for inclusion in these Proceedings.

Opening

Welcoming and Al Diaz Introduction (see Preface to H. Kea paper in Session 1).
M. Szczur, NASA/Goddard

Key Note Address (not available)
A. Diaz, Director of NASA/Goddard

Session 1: The Software Engineering Laboratory — Discussant: H. Kea,
NASA/Goddard

Goddard's New Integrated Approach to IT
H. Kea, NASA/Goddard

Baselining the New GSFC Information Systems Center: the Foundation for Verifiable
Software Process Improvement

A. Parra, D. Schultz, J. Boger, and S. Condon, Computer Sciences Corporation,

V. Basili, R. Webby, M. Morisio, D. Yakimovich, and J. Carver, University of
Maryland, S. Kraft and J. Lubelczyk, NASA/Goddard

Using Experiments to Build a Body of Knowledge
V. Basili, University of Maryland

Session 2: Experimentation — Discussant: R. Webby, University of Maryland

Culture Conflicts in Software Engineering Technology Transfer
D. Wallace, National Institute Of Standards and Technology, and M. Zelkowitz,
University Of Maryland

An Adaptation of Experimental Design to Empirical Validation of Software
Engineering Theories
N. Juristo and A. Moreno, Universidad Politecnica de Madrid

Disciplined Software Engineering: Extending Enterprise Engineering Architectures
to Support the OO Paradigm
F. Maymir-Ducharme, Lockheed Martin

CONTENTS (cont’d)

Session 3: Inspections — Discussant: G. Abshire, Computer Sciences Corporation

National Software Quality Experiment: A Lesson in Measurement: 1992 - 1997
D. O'Neill, Independent Consultant

Principles of Successful Software Inspections
D. Beeson, Ki Solutions Consulting, and T. Olson, World-Class Quality

Capture-Recapture - Models, Methods, and the Reality
J. Ekros and A. Subotic, Linkoeping University

Session 4: Fault Prediction — Discussant: M. Zelkowitz, University of Maryland

Software Evolution and the Fault Process
A. Nikora, Jet Propulsion Laboratory, and J. Munson, University of Idaho

Integrating Formal Methods Into Software Dependability Analysis
J. Knight and L. Nakano, University of Virginia

An Adaptive Software Reliability Prediction Approach
M. Yin, L. James, S. Keene, R. Arellano, and J. Peterson, Raytheon Systems
Company

Key Note Address (not available)

The Fatal Flaw
I. Peterson, Math/Computers Editor for Science News

Session 5: Verification & Validation — Discussant: J. Lubelczyk, NASA/Goddard

Model Checking Verification and Validation at JPL and the NASA Fairmont IV&V
Facility

F. Schneider, Jet Propulsion Laboratory, S. Easterbrook, NASA IV&V Facility,

J. Callahan and T. Montgomery, West Virginia University

Using Model Checking to Validate AI Planner Domain Models
J. Penix, C. Pecheur, and K. Havelund, NASA Ames Research Center

V&V of a Spacecraft’s Autonomous Planner through Extended Automation
M. Feather and B. Smith, Jet Propulsion Laboratory

Performing Verification and Validation in Reuse-Based Software Engineering
E. Addy, NASA/WVU Software Research Laboratory

Session 6: Embedded Systems and Safety Critical Systems — Discussant: S. Kraft,
NASA/Goddard

Defining and Validating Embedded Computer Software Requirements Using the ECS,
OTPM and IPFA

J. Manley, University of Pittsburg

CONTENTS (cont’d)

Using Automatic Code Generation In the Attitude Control Flight Software

Engineering Process
D. McComas, J. O'Donnell, Jr., and S. Andrews, NASA/Goddard

Determining Software (Safety) Levels for Safety Critical Systems
M. Yin and D. Tamanaha, Raytheon Systems Company

Appendix A — Workshop Attendees

Appendix B — Standard Bibliography of SEL Literature

Session 1: The Software Engineering Laboratory

Goddard's New Integrated Approach to IT
H. Kea, NASA/Goddard

Baselining the New GSFC Information Systems Center:
the Foundation for Verifiable Software Process Improvement
A. Parra, D. Schultz, J. Boger, and S. Condon, Computer Sciences Corporation,
V. Basili, R. Webby, M. Morisio, D. Yakimovich, and J. Carver,
University of Maryland,
S. Kraft and J. Lubelczyk, NASA/Goddard

Using Experiments to Build a Body of Knowledge
V. Basili, University of Maryland

5~ e l:'~r~_i "
, Information Systems Center

GODDARD'SNEW APPROACH TO
INFORMATION TECHNOLOGY

The Information Systems Center
An Overview

The 23" Annual Softwar e Engineering
Workshop

December 2-3, 1994

By Howard E. Kea

PREFACE
By Martha Szczur

Welcome and Al Diaz Introduction

23rd GSFC Software Engineering Workshop

December 2, 1998

Hi, I’'m Marti Szczur, the Chief of the Information Systems Center, which is one of the organizations
within the Applied Engineering & Technology Directorate (AETD).

Since last year’ s workshop, Goddard has undergone a significant reorganization. AETD is one of two new
directorates, made up of over 1300 Goddard engineers, including computer science professionals. The
engineers are matrixed or assigned to flight projects, science directorate activities and/or advanced
technology tasks. ISC is one of the engineering groups within AETD, and as the name implies, the
Information System Center is heavily vested in al aspects of software (from design, development, testing,
validation, integration, maintenance, and including assessment of existing software products.)

The software is applied to a broad spectrum of mission and science systems ... from command & control
of the spacecraft (both on-board and on the ground) to planning/scheduling, guidance & navigation
systems, communication support, to the processing, archival, & distribution and analysis of science data
... Software is one of the key business products within the ISC.

And thus, my interest in software engineering is extremely high. In fact, the Software Engineering Lab,
the group hosting this workshop, resides within the ISC, and | am a strong supporter of the research they
conduct. I'm also interested in their expanding their software engineering knowledge and influence across
Goddard, aswell asNASA. Because of my vested interest in SE as a computer science discipline, it is

rd
quite a privilege for me to be opening this 23~ Software Engineering workshop.
I’d like to mention a recent exercise at Goddard, which involved looking ahead to the year 2003 and
defining the type of work and missions in which we would be involved. And, the future missions identified
have increasing software complexity, such as

- operation of multiple spacecraft and constellations

distributed sensing systems
- increased on-board science processing and autonomous operations

- higher volume/higher rate of science data to process, manage, archive and distribute

collaborative, distributed engineering and science computing environments to improve formulation and
implementation of missions, as well as to foster collaborative scientific discovery.

To meet these software challenges, It is critical that advancements in software engineering be made.
Today, the software industry has not been overly successful in consistently devel oping software systems
that are within budget or on time or which meet all the requirements.

For example, in a Standish Group’s 1994 study*, based on an evaluation of 8330 industry software
projects, only 16% were actually successful in being on-time, in budget and meeting all originally-specified
requirements,

A staggering 53% were “challenged”. On an average, they were (1) 189% over budget, (2) had time
overruns of 222% and (3) only 61% of originally specified requirements were met.

The other 31% of the software projects were canceled somewhere during development.

Thus, with the increase of NASA mission’s dependency on software and the increase in its’ complexity, a
focus on producing quality software, and thus software engineering, | feel, becomes a critical necessity.

And, it ismany of you in this room who will move usin adirection to enable a time when we can develop
software systems which are bug-free, reusable, delivered on schedule and within cost while meeting al
requirements...on a consistent basis.

Many of the presentations over the next two days pertain to advances and lessons learned which are directly
related to the software engineering challenges we face. | look forward to listening and learning from the
diverse collection of international experts represented here today.

I have the privilege this morning to be introducing, Al Diaz, who is the Director of Goddard Space Flight
Center.

We are very lucky at GSFC because Al, | believe more than any other Center Director to date, has an
appreciation of the critical role software ... and in particular QUALITY software ... playsin the success of
Goddard’ s missions, and he recognizes its increasing role in the future.

So, with pleasure, | welcome Al and thank him for agreeing to take time from hisincredibly busy schedule

d
to open the 23r Software Engineering Workshop.

* NOTE: The Standish Group International, Inc. is a market research and advisory firm specializing in
mission-critical software and electronic commerce. Information about this study can be found on their web
siter http://www.standishgroup.com Go to the option titled “Chaos Report.”

BACKGROUND

The Goddard Space Flight Center (GSFC) Strategic Implementation Plan (SIP) was published in January
1997. Since the plan was published several centerwide activities have been initiated. Onein particular
known as “Project Goddard” is responsible for one of the most significant changes that have occurred in
Goddard' s history. This was the reorganization of Codes 500 and 700. The reorganization [Reference 1]
was the result of much planning that began with an assessment of the external environment and the writing
of Goddard’s SIP followed by definition of macro level processes from which an organization that could
support those processes was derived. In today’ s environment, performance, cost and schedule are three
critical elements to the successful execution of a program. The requirements have become an integral
factor throughout the development process making it necessary for close customer involvement. The
reorganization was primarily structured to more effectively focus engineering talent into teams drawn from
the different disciplines. This would facilitate being able to provide products and services which support
mission needs aligned with customer requirements.

INFORMATION SYSTEMS CENTER

The I SC was created as part of the Goddard reorganization and was located within the Applied Engineering
and Technology (AET) Directorate. Why create an ISC? The creation of 1SC was to (1) focus expertise
and leadership in information system development. (2)Promote organizational collaboration, partnerships,
and resource sharing. (3)Stimulate design /devel opment of seamless end-to-end flight and ground systems.
(4) Enable flexibility to effectively support many simultaneous projects by improved access to critical mass
of discipline expertise. (5)Enhance career growth and opportunities including multi-disciplinary
opportunities and (6) to improve communications among information system professionals. Figure 1, isan
Organizational Chart of Goddard after the reorganization showing AETD and System, Technology, and
Advanced Concepts (STAAC) as new organizations.

GSFC - after reorganization ISC ==

Goddard Space Flight Center

DIRECTOR: A.Diaz
DEPUTY DIRECTOR: B. Townsend

ASSOCIATE DIRECTOR ASSOCIATE DIRECTOR
SPACE SCIENCES
PROGRAM

M. Kicza

J. Hrastar

OFFICE OF HUMAN CFO
RESOURCES C. Tulip

J. Smpson N. Abell, Deputy

[NEW I I I

SYSTEMS TECHNOLOGY
& ADVANCED
CONCEPTS

EARTH SCIENCES MANAGEMENT FLIGHT PROJECTS

OPERATIONS

V. Salomonson J. Moore

D. Zukor, Deputy . S Foster Vacant, Deputy
O. Figueroa Vacant, Deputy
kewitsch, Deput:
NEW
APPLIED OFFICE OF FLIGHT SUBORBITAL &
SPACE SCIENCES ENGINEERING & ASSURANCE UNIVERSITY CLASS
TECHNOLOGY PROJECT OPERATIONS
S Holt C. Vanek
Vacant, Deputy B. Keegan 'W. Denoon, Deputy A Torres
2

Figure 2. Shows the AETD Organization, the Director is Brian Keegan.

Goddard Space Flight Center

AETD ORGANIZATION

AET DIRECTORATE

BUSINESS
MANAGEMENT OFFICE

Code 501

Chief: Alda Smpson
Associate: Grettchen Burton

CODE

500

Director:
Deputy:

Associate: Krista Paquin

Brian Keegan
Dolly Perkins

|

MECHANICAL SYSTEMS
CENTER

Code 540

Chief: Ed Powers
Associate: Steve Brodeur
Associate: TBD

ELECTRICAL SYSTEMS
CENTER

Code 560

Chief (Acting): Bob Kichak
Associate: Bob Kichak
Associate: Dennis Andrucyk

INFORMATION SYSTEMS
CENTER

Code 580
Chief: Marti Szczur

Associate: Joe Hennessy
Associate: Doug McCuistion

INSTRUMENT
TECHNOLOGY CENTER

Code 550

GUIDANCE, NAVIGATION
& CONTROL CENTER

Code 570

Chief: Frank Bauer
Associate: Marty Frederick

Chief: JimMason
Associate: Carolyn Krebs

Figure 2.

There are five Engineering Centers within the AETD which are equivalent to Division level organizations.
Each of these engineering centersis focused on a particular engineering discipline. The ISC (Code 580) is
the engineering center focused on software engineering and computer science. The ISC mission is
[Reference 2] “to provide high value information systems products and services and to advance information
technologies, which are aligned with customer needs.” The ISC organization is shown in Figure 3 below.

I SC has 8 Branches in which each Branch is focused on critical software engineering domains that cover
the full lifecycle phase of amission. Table 1, represents each of the Branches in the ISC and highlights
their mgjor functional areas, products and services, customers and projects supported. More detailed
information can be found at the |SC Website, http://www.isc.nasa.gov. 1SC is predominantly a matrix
organization in that many of the Branch personnel 581, 584, 586 are co-located with the project offices.
The process in which personnel are assigned is accomplished annually when the projects submit Statements
of Work (SOW) to the ISC for services. Personnel with the necessary skills and experience are then
assigned to the project from 1 to several years dependent on the duration of the project.

580/ Infor mation Systems Center Branch Structure

Branch

Functional Area/Products

Services

Customer Projects/Org

581 / Systems Integration and
Engineering

Leslye Boyce, Howard Kea,
Margaret Caulfield

End-to-end data systems
engineering of 1SC mission
systems development activities.

Mission directors, ground sys/flight
ops management, sys. eng., flight prep
support, SW eng, Sys|&T, AO prep

EOSDIS, HST, STAAC, NGST,
MAP, IMAGE, TRACE, POES,
AGS, on-orbit missions

582/ Flight Software
Elaine Shell, Ray Whitley, Lisa Shears

Embedded spacecraft, instrument
and hardware component
softwares; FSW testbeds

End-to-end FSW development;
simulation s/w; spacecraft
sustaining engineering

HST, MAP, TRMM, EO-1,
SMEX, SMEX-lite, SPARTAN,
EOS AM/PM/Chem, GLAS,
XRSXDS, POES, NGST, XTE,
EUVE, GRO

583/ Mission Applications
Henry Murray, Scott Green

Off-line mission data systems
(e.g., Command man., s/c mission
and science P& S, GN&C, NCC

Sys. eng.& implementation, COTs
application, testbeds for concept
proof/prototyping in ops environment

NCC SPSR, LS7, EO-1, EOS
AM1, HST, TRACE, C930,
IMAGE SOC

584 / Realtime Software

Real-time ground mission data

Sys. eng.& implementation, COTs

HST, WFF, ISTP, IMAGE,

Engineering systems for I1&T and on-orbit ops PO : MAP, SMEX, TRACE,WIRE,
Barb Pfarr, Jay Pittman, John (eg., s'c command & control, application, smulators, testheds for EO-1, LS7, HITCHHIKER,
Donohue launch and tracking services) concept proof/prototyping in ops env. SPARTAN, EOS, NGST

585 / Computing Environments
and Technology
Howard Eiserike, Seve Naus

Tools and services in support of
information management

Hands-on sys admin., network
manage., business/support tool
develop, WWW application

EOSDIS, IFMP, C630, C930,
HST, WSC, C250, C450, HST

586 / Science Data Systems
Mary Ann Esfandiari, Mary Reph

Science data systems including
data processing, archival,
distribution, analysis & info man.

Sys. eng.& implementation, COTs
application & integration, testbeds,
prototyping

EOSDIS, LS7, TRACE, TRMM,
HST

587 / Advanced Data
Management and Analysis
M. Esfandiari (Acting), Jim Byrnes

Advanced concept development
for archival, retrieval, display,
dissemination of science data

Next-gen req. development, testbed for
sys evaluation, prototype products

FAST, NEAR, WIND,
ULYSSES, C632, C686, C694,
€930, C922

588,/Advanced Architectures &
Autonomy
Doug McCuistion (Acting), Julie Breed|

Technology R& D focused on
space-ground automation sys. and
advanced architectures

Sys. eng & implementation, human-
computer eng., technology evaluations,
concept prototypes, sw eng. methods

Table 1.

NCC, STAAC, SOMO, Code
SM, EOSDIS, MIDEX, NGST

The ISC has 4 smple but very critical Strategic Goalsto achieve in the next 5 years:

=

Advance leading-edge information systems technology.

2. Clearly define the scope of I1SC business, and deliver high value products and services that satisfy
customer needs.

3. Build adiverse, talented, innovative, energized, internationally recognized, workforce of employees
and managers.

4. Establish open, flexible, collaborative relationships with customers and partners.

These strategic goals are aligned with the Goddard Strategic Goals.

Role of the Software Engineering Laboratory in ISC

Given the external drivers such as“Agendafor Change “ which promulgated the creation of the ISC, the
SEL has an opportunity to leverage its capabilitiesto help the ISC meet its strategic goals and objectives.
There are several areas where the SEL can be an enabler for software process improvement:[Reference 3]:

Build an improvement organization within the ISC that will increase the competency of its software
engineering professionals, thereby increasing the quality of Goddard software systems.

Model and characterize software systems in use on the ground and onboard spacecraft.

Transfer and help tailor proven development and maintenance technologies to new domains, internal
and external to GSFC.

Asaresult of Goddard’ s organizational changes, a new vision and mission statement and new goals and
objectives have been established for the SEL. Over the past several months a series of workshops had been

conducted with the SEL Director’s to outline and define the new direction for the SEL and still maintain its
heritage over the past 20 plus years. The SEL’s new Vision and Mission statement shown in Figure 3,
emphasi zes continuous software process improvement.

Software Engineering Laboratory Vision:

To be internationally recognized as a leader for applied research in Evolutionary
Software Engineering Process Improvement.

Software Engineering Laboratory Mission:

“Serve as a World Class Laboratory dedicated to evolutionary software
engineering process improvement and serve as a clearinghouse within GSFC for
software engineering best practices. And to foster the development of highly skilled
software engineers in the ISC and in GSFC and contractor community through
continued education and training of software development practices and
methodologies.”

Mission Objectives:

1) To study, research and roll out products from our best practices and
methodologies.

2) To provide useable and applicable products aligned with customer needs.

3) To increase visibility, size and scope.

4) To partner with other software engineering organizations.

5) To serve as clearinghouse within ISC/GSFC for Software Engineering process
improvement information.

6) To educate the software engineering community on software engineering best
practices.

7) To identify resources for funds.

8) To develop quickie products e.g. “reusable abstractions” and modularize SEL
documents into a handbook format.

9) To develop strategies for rolling out practices to customers and immersing
customers in the process.

Figure 3

The current base of SEL activities include: management of databases and producing monthly reports,
development of WEB based forms to eliminate file transfer, maintenance of SEL Library and development
of Software Engineering Courses. Current research topics include Meta-process, Baseline Process and
Core Metrics development. Short term and long term goals for the SEL have been established. They are:

SEL Short-term Goadls:

1) Software Engineering Workshop

2) Complete ISC basdline study

3) Update SEL webpage

4) Develop customer focus teams

5) Increase GSFC visibility and interaction

SEL Long-term Goals:

1) Develop afull Software engineering training development program

2) AssisttheSCinobtaining CMM level 2 & 3

3) Establish partnerships with other software Engineering process improvement organizations

Figure 4 shows the relationship of the SEL with ISC. Under the new SEL structure, the |SC Branches and
Teams would work more closely with the SEL in defining current processes and devel oping improved
processes. The SEL analysts' role would expand to encompass end-to-end systems devel opment processes,
from requirements definition through maintenance and operations. In addition, new metrics will be
developed that include the complete lifecycle of the end-to-end systems development process. An example
of software technology products supporting the end-to-end mission system is shown in Figure 5.

,\FQ%A Example ISC Technology in ISC“'
the End-to-end Mission System oo

Goddard Space Flight Center

Science
Satellites

- NGST Adaptive Scheduling
- Real-time Weather Assessment
for Remote Sensing Spacecraft

Data Archives

Science PI's
= // u *
«%s / - HST/V2K Data Warehousing\
I=

- Remote Instrument Control R v-L d
- NGST Scientist’s Expert emotely-Locate

Assistant FOLMember or PI - SMEX GDS & Automation
3 - Mission Ops Automation

- Java-based Remote

Command & Control

- TRACE Automation & - S/C Emergency Response System
Remote Notification
- Remote Instrument Control

w [

21

Figure 5.

Asaresult of the expanded responsibilities, the SEL has already begun to baseline the ISC Branch’s
products and services and software devel opment processes and team products. This effort will establish a
basis for measuring the impact of software process improvement measures that are implemented within the
ISC. SEL isasointhe process of developing a series of lectures and courses that focus on the Software
Engineering Process incorporating the CMM philosophy. The SEL will also play akey role in helping the
ISC to achieve CMM levels 2 & 3 and the presence of the SEL in ISC aso provides the potentia to
ultimately achieve CMM levels 4 &5.

In summary, the 23 year history of the SEL has proven that long term focus on continuous improvement
can reduce costs and produce a better product. The SEL, as aresearch organization must continuously
adopt to the changing environment in which it exists. Expanding the scope and support activities of the
SEL will present a great challenge, however, it will position the I1SC to be able to improve Goddard’ s future
systems development efforts.

References:

(1) Keegan, B. “Applied Engineering & Technology Directorate (AETD) 500,” AETD Newsdletter, NASA
Goddard Space Flight Center, August 1998.

(2) 1SC Management Team, “1SC Retreat Report”, St. Michaels, MD, March 1998.

(3) Pgjerski, R. and V. Basili, “The SEL Adapts to Meet Changing Times,” Proceedings of the 22™
Annua Software Engineering Workshop, Greenbelt, MD, December 1997.

(4) Szczur, M., “Information Systems Center (ISC) Overview Briefing”, NASA Goddard Space Flight
Center, May 1998.

(5) Kea, H., “Software Engineering Laboratory Overview,” NASA Goddard Space Flight Center,
September 1998

-, Information Systems.Center,

An Overview

The 23rd Annual Software

Engineering Workshop
Pec. 2-3, 1996

+ - Information.Systems.Center;

initiated such as “Project Goddard”.

Genesis for the reorganization of Codes
500 and 700

DIRECTOR:

DEPUTY DIRECTOR:

ASSOCIATE DIRECTOR
MTPE

J. Hrastar

OFFICE OF HUMAN
RESOURCES

J. Smpson

EARTH SCIENCES . SYSTEMS TECHNOLOGY &
ADVANCED CONCEPTS
O. Figueroa
M. Ryschkewitsch, Deputy

V. Salomonson
D. Zukor, Deputy

APPLIED ENGINEERING &
TECHNOLOGY

SPACE SCIENCES

S Holt

B. Keegan
Vacant, Deput .
SEALL Y D. Perkins, Deputy

& Informa non&stemsﬁ’enfef

iganization

A. Diaz

B. Townsend

ASSOCIATE DIRECTOR
SPACE SCIENCES
PROGRAM

M. Kicza

CFO

C. Tulip
N. Abell, Deputy

MANAGEMENT FLIGHT PROJECTS
OPERATIONS

J. Moore

S Foster Vacant, Deputy
Vacant, Deputy

OFFICE OF FLIGHT SUBORBITAL &
ASSURANCE UNIVERSITY CLASS

PROJECT OPERATIONS
C. Vanek

W. Denoon, Deputy A. Torres

& mfofmatioﬁ:-&s_rem:;._ﬁ’énfer

AET DIRECTORATE

CODE
500 Director: Brian Keegan

BUSINESS
MANAGEMENT OFFICE
Code 501

Chief: Alda Smpson

E i #
MECHANICAL SYSTEMS ELECTRICAL SYSTEMS INFORMATION

CENTER
CENTER SYSTEMS CENTER
Code 540 Code 560

Chief: Ed Powers i Chief (Acting): Bob Kichak Code 580
Chief: Marti Szczur

INSTRUMENT GUIDANCE, NAVIGATION
TECHNOLOGY CENTER & CONTROL CENTER

Code 550 Code 570
Chief: Jim Mason Chief: Frank Bauer

Support Manager, Den Giblin
s, Vi)xenham & Earl Bearc

Advanced Technology Office

Assistant for Technology,
Peter Hughes (1)

Systems Integration Mission 1 Computing Advanced Data
and Engineering @t Applications Environments and Management and
L eslie Boyce | | HenryMurray Technology Analysis
Howard Kea Scott Green Howard Eiserike Mary Ann Esfandiari
Margaret Caulfield 583 (33) Steve Naus Jm Byrnes
581 (52) 585 (42) 587 (14)

Flight Realtime Software Science Data Advanced Architectures and
Software Engineering Systems Automation

Elaine Shell Barbara Pfarr Mary Ann Esfandiari Doug M cCuistion (Acting)
Ray Whitley Jay Pittman Mary Reph Julie Breed
Lisa Shears John Donohue
2 588 24
2 (52) 584 (55) 586 (39) o

Services

Customer Projects/Org

Mission directors, ground sys/flight

I ops management, sys. eng., flight prep

support, SW eng, Sys1&T, AO prep

EOSDIS, HST, STAAC, NGST,
MAP, IMAGE, TRACE, POES,
AGS, on-orbit missions

End-to-end FSW devel opment;
simulation s/w; spacecraft
sustaining engineering

HST, MAP, TRMM, EO-1,
SMEX, SMEX-lite, SPARTAN,
EOS AM/PM/Chem, GLAS,
XRS XDS, POES, NGST, XTE,
EUVE, GRO

583 / Mission Applic
Henry I:\ig\g-.g[ray, Scott Green

Sys. eng.& implementation, COTs
application, testbeds for concept
proof/prototyping in ops environment

NCC SPSR, LS7, EO-1, EOS
AM1, HST, TRACE, C930,
IMAGE SOC

584 [Redltime Software
Engineering

Barb Pfarr, Jay Pittman, John:
Donohue

me ground mission data
stemsfor 1& T and on-orbit ops
.0., S/c command & control,
: d tracking services)

Sys. eng.& implementation, COTs
application, simulators, testbeds for
concept proof/prototyping in ops env.

HST, WEF, ISTP, IMAGE,
MAP, SMEX, TRACE,WIRE,
EO-1, LS7, HITCHHIKER,
SPARTAN, EOS, NGST

585 / Computing Environments

and Technology
Howard Eiserike, Steve Naus

Hands-on sys admin., network
manage., business/support tool
develop, WWW application

EOSDIS, IFMP, C630, C930,
HST, WSC, C250, C450, HST

586 / Science Data Systems
Mary Ann Esfandiari, Mary Reph

Science data systems including
data processing, archival,
distribution, analysis & info man.

Sys. eng.& implementation, COTs
application & integration, testbeds,
prototyping

EOSDIS, LS7, TRACE, TRMM,
HST

587 | Advanced Data

Management and Analysis
M. Esfandiari (Acting), Jim Byrnes

Advanced concept development
for archival, retrieval, display,
dissemination of science data

Next-gen req. development, testbed for
sys evaluation, prototype products

FAST, NEAR, WIND,
ULY SSES, C632, C686, C694,
C930, C922

588,/Advanced Architectures &

Autonomy
Doug McCuistion (Acting), Julie Breed

Technology R& D focused on
space-ground automation sys. and
advanced architectures

Sys. eng & implementation, human-
computer eng., technology evaluations,
concept prototypes, sw eng. methods

NCC, STAAC, SOMO, Code
SM, EOSDIS, MIDEX, NGST

ognl.ied workforce of employees zlgle

' SC|ence nd for advanced information technologies to support
institutional customers.

ISC delivers innovative, customer-oriented solutions, products
and services.

ISC’s relationships with customers are open, flexible,
collaborative and based on trust and mutual respect.

ISC operates like a business with responsive, efficient, value-
added processes, enabling technology infusion/transfer and
effective delivery of products and services.

: mformaﬂoﬂf-ss_tems._ﬁ'emer

hlgh value broducts and services that satlsfy customer
needs.

Build a diverse, talented, innovative, energized,
Internationally recognized, workforce of employees and
managers.

Establish open, flexible, collaborative relationships with
customers and partners

: mformaﬂoﬂf-ss_tems._ﬁ'emer

NASA/GSEC/EDD as the user and manager of all of
the relevant software systems,

UM as the focus of advanced concepts in software
process and experimentation, and

CSC as the major contractor responsible for building
and maintaining the software used to support the
NASA missions.

¢ "." - :.l l“ ._... ~ L |
: mformafioﬂf-ss_tems._ﬁ'emer

Softwele leer n' Laboratory Mission: “Serve as a World
Class Laboratony dedicated to evolutionary software
engineering proecess improvement and serve as a
clearinghouse within GSFC for software engineering best
practices. And to foster the development of highly skilled
software engineers in the ISC and in GSFC and contractor
community through continued education and training of
software development practices and methodologies.”

L
\af/%

maintenance of SEL Library
development ofi Software Engineering Courses.
Current research topics include

Meta-process, Baseline Process and Core Metrics
development.

mformaﬂoﬂf-ss_tems._ﬁ'emer

term Goals

Devélop Short 1 day courses
Increase GSFC Visibility and Interaction

Support ISC Reuse Program in Collaboration
with Ames IV&V Center

." - :.l l“ :.-l,._... o~ 1 |
Information.Systems.Center;

Establish Partnerships with other
Software Engineering Process
Improvement organizations

neermg professionals, thereby
g the quality of Goddard software

Moedel and characterize software systems In
use on the greund and onboard spacecratft.

Transfer and help tailor proven development
and maintenance technologies to new
domains, internal and external to GSFC.

iori. Systems.Center;

Remote Sensing Spacecraft

.[')"a-ta Archives

Remote Instrument Control
- NGST Scientist’'s Expert
Assistant o FOL Member or Pl - SMEX GDS & Automation
“ - Mission Ops Automation
- Java-based Remote

- TRACE Automation & Command & Control
Remote Notification - S/IC Emergency Response System

- Remote Instrument Control

Remotely-Located

ystems Integration & Engineering §f |

< Informatiori Ss.ten‘*."s._ﬁ’emer

Flight Software

Designs studies
Performs analysis
Refines processes
RVUESTely

Applications

Documents Processes
Collects and Archives Data
Serves as Repository
Provides Reports

Realtime Software
Data Systems : Engineering

Computing Environments and Technology

Baselining the New GSFC
| nfor mation Systems Center :
The Foundation for Verifiable
Softwar e Process | mpr ovement

A. Parra, D. Schultz, J. Boger, S. Condon,
CC
R. Webby, M. Morisio, D. Y akimovich,
J. Carver, M. Stark,
University of Maryland
V. Basili,
Fraunhofer Center Maryland and University of Maryland
S. Kraft,
NASA/GSFC

Abstract

This paper describes a study performed at the Information System Center (ISC) in NASA
Goddard Space Flight Center. The ISC was set up in 1998 as a core competence center in
information technology. The study aims at characterizing people, processes and products of the
new center, to provide a basis for proposing improvement actions and comparing the center
before and after these actions have been performed. The paper presents the ISC, goas and
methods of the study, results and suggestions for improvement, through the branch-level portion
of this baselining effort.

Introduction

At the beginning of 1998, a major reorganization of software engineering functions took place
within the NASA Goddard Space Flight Center. A new “Information Systems Center” (ISC) was
created with the objective of concentrating and consolidating Goddard’ s Information Technology
(IT) capabilities into one organizational unit.

Within the aegis of this new organization, sits the Software Engineering Laboratory (SEL) [1,7],
a twenty-three years old consortium of process and product improvement specialists from three
organizations. NASA Goddard itself, the University of Maryland and Computer Sciences
Corporation. The SEL had previously focused most of its efforts within the Flight Dynamics
Division (FDD), performing process and product improvement studies and software engineering
experiments. With the reorganization of software activities at Goddard, its scope how expands to
the entire 1SC. Therefore there was a need to better understand the wider context that the SEL
now found itself within.

Consequently, a*“baseline” study was initiated by the SEL in April 1998. The am of the baseline
was to characterize or profile the ISC in terms of its people, processes and products. Each branch
and many teams within the ISC were studied for the purpose of completing an initial baseline
study. We emphasize the word “initial” to indicate that this study is not a detailed baseline in the
sense of capturing extensive focussed data about one aspect of the ISC’ s operations. Rather itisa
baseline that will provide an overal high-level profile of the new organization.

Many previous baselines have been conducted within the FDD, as well as at the level of Goddard
Code 500 [4], Goddard as a whole [5] and NASA as a whole [6]. The questionnaires developed
by the baselining team were heavily based on these earlier studies to enable comparison. Where
practical, this paper will compare data from ISC with earlier studies.

This paper documents preliminary data and observations that the SEL has made in baselining the
ISC. The ultimate goals of the baselining study are to identify areas for process and product
improvement of benefit to Goddard, as well as interesting and novel research areas to pursue.
This paper will begin by elaborating upon the goals of the study. It will continue by describing
the methods adopted (and their constraints), the data collected, and the preliminary results of the
work. The paper concludes with some recommendations for |SC and suggestions for future work
for the SEL.

The ISC
Quoting from the I SC home page [8]:

“The Information Systems Center (I1SC) is an innovative center of expertise in the implementation of
seamless, end-to-end information systems in support of NASA programs and projects, and
specifically the GSFC Earth Science, Space Science and Technology focus areas. The ISC provides
leadership and vision in identifying and sponsoring new and emerging information systems
technologies.”

The ISC is organized in eight branches, each with a unique function. Refer to Figure 1for the
organization structure of ISC and Table 1 for the associated products and services. The meaning
of boxes line styles will be explained later. The work is organized in various manners. within
these branches exist teams that are producing software products and services, there are personnel
(and sometimes teams) matrixed to other ISC branches or other Codes at GSFC, and there are
cross-branch teams that serve all the ISC with representation from the branches. The detailed
organizational structureisexplainedin [3].

Certain terminology (noted in Italics) is used in this environment and in this paper, especially
terminology related to organizational structure. Basic organizational structure is broken down
from highest level to lowest, GSFC is divided into 9 directorates, including the Applied
Engineering and Technology Directorate (AETD), within that there are 5 Centers, including the
Information Systems Center, within that the eight branches mentioned above, within those
branches, teams of individuals supporting projects, such as the Earth Observing System (EOS).
Sometimes a person or persons is matrixed from one organizational entity to another, so that one
group manages the work, while the person(s) maintains their original organizational alliances.

Code 580
Information Systems Center

Code 581
Systems
Integration &
Engineering

Code 582
Flight
Software

Code 583 Code 584
Mission Real-Time

Applications Software
Engineering

Code 585 Code 586
Computing Science
Environments Data
&Technology | | Systems

Code 587
Adv. Data
Management
& Analysis

Code 588
Adv.
Architectures
& Automation

Figure 1 - Organizational Structure of the | SC

Branch Code Branch Name Products/Services
581 Systems Integration and End-to-end data systems engineering of
Engineering I SC mission systems devel opment
activities
582 Flight Software Embedded software products for on-
board data handling; management and
control of flight hardware
583 Mission Applications Off-line mission data systems
(command management, spacecraft
mission planning and scheduling,
science planning, etc.)
584 Real-Time Software Tools and services in support of
Engineering information management. Real-time
ground mission data systemsfor & T
and on-orhit ops (e.g., s'c command
and control, launch, and tracking
services)
585 Computing Environments Tools and services in support of
and Technology information management. Hands-on
system administration, network
management, WWW applications
586 Science Data Systems Data processing, archival distribution,
analysis and information management
for science data systems
587 Advanced Data Advanced concept development for
Management and Analysis archival, retrieval, display, and
dissemination of science data
588 Advanced Architectures Technology R& D focused on space-
and Automation ground automation systems and
advanced architectures

Table 1. Products and Services of the | SC Branches

Goals for Baselining

The major objective of the baselining study is to gain an understanding of the ISC as to allow us
to identify areas for process and product improvement. The philosophy behind the effort is to
characterize and understand the new organization before attempting to introduce any new
technology or process improvements. From the understanding, we seek to find a basis to assess
improvements, which can then be packaged for wider integration into the business. Figure 2
highlights the role of baselining (the bottom rectangle) in the broader context of process and
product improvement according to the Experience Factory paradigm [1].

PACKAGE

Integrate the improvement into your business

» Update standards
* Refine training

lterate />

ASSESS * Tailor process based on experiments
Select/define, implement, & evaluate an improvement locally
Goals * Will particular reading techniques improve quality?
v * Will OOT lead to higher reuse?
UNDERSTAND » Will a different testing technique reduce costs?

Gather, sift, and analyze data to build baselines

« [dentify software characteristics
» Characterize process used
* Define goals

EXAMPLES

TIME -

Figure 2 - Role of Baselinesin Process and Product | mprovement

Methods Used

The following methods, aready used in the COTS Study [9], were used.

First, a number of questions and measures have been developed, starting from the high level
goals and using the Goal Question Metric (GQM) approach [2], to collect information about
ISC’ s processes, products and people. They gather both quantitative and qualitative information
— some of the data are numeric and highly factual (e.g. staff numbers), whereas other data
represent informed opinion (e.g., expectations of future change). The aim is to be able to
characterize the software products, processes and people within the organization, with adequate
qualitative context to meaningfully interpret the hard quantitative data.

Questions and measures have then been organized in a questionnaire and a structured interview
[10]. The interview being constrained to no more than 30 — 45 minutes covered the qualitative
data. The questionnaire was devoted to quantitative data that were less subject to interpretation.

To enforce consistency, guides for filling questionnaires and performing interviews were
developed too [10].

After validating these tools with pilots, they were used to collect data from branch heads and
team leaders. The process was the following.

During the interview, the Interviewer asks questions following the outline of the Interview
Guide. The Scribe takes notes and employs a tape recorder, if acceptable to the Interviewee, to
aid in preparation of the interview report. The Interviewee istold that the result of the interview
is the interview report, which will not be considered final until the Interviewee had read and
approved it. At the end of the interview the Scribe may ask some clarification questions. The
Interviewer gives a copy of the Questionnaire, which asks questions of a detailed, numeric nature
that don't lend themselves well to open-ended, face-to-face discussion to the Interviewee, and
reguests that the Questionnaire be completed within two weeks.

After the interview, the Scribe prepares an interview report, consisting of brief summaries of the
Interviewee's responses to the questions on the standard Interview Guide. The Interviewer
reviews the notes. Once reviewed they are sent to the Interviewee for concurrence. At this stage
of the process, the interview report is considered approved. Tape recordings were not kept as the
approved interview report serves as the result of the interview.

At the end of theinitial interview, the Interviewer schedules a follow-up interview. The purpose
of the follow-up is to go over the questionnaire that the interviewee has completed, and resolve
any items where either the questions weren't clear to the interviewee, or the responses are unclear
to the interviewer.

About the data

The baseline study collects data at two levels within the ISC: the branch and team levels. The
current status of the study is that we have completed the branch data collection and analysis, and
are currently finalizing the team-level data collection and the team-level analysisis in progress.
Therefore this paper will only report on the results from the branch-level data.

The branch-level data were collected from the management of each branch. Our aim at the
branch-level data collection stage was to build an overal characterization of the organization,
with a wide range of factors (e.g. process, people, and product) considered. The intent is that we
will perform more detailed baselines on specific factors in a subsequent study, as and when more
accuracy isrequired.

The consequence is that the data reported in this paper have varying degrees of reliability. In
some cases, they are actual data (e.g. head count). In other cases, they may be derived data. For
example, a question asking how much effort was spent on software maintenance versus
development was sometimes answered by managers going through their roster and counting how
many people did maintenance versus development. In other cases, the data may represent only
“guesstimates’. Sometimes we asked questions seeking data that they do not collect, so they had
to estimate. In all cases, we are dealing with a new organization, so there is not a body of
historical data, or even established data collection procedures in many cases.

Aswe analyze the data, we will report on the expected reliability.

Findings

Domains

Figure 3 presents a depiction of sample application domains in the ISC, in contrast to the more
focused domains of the FDD. Whereas the FDD was primarily concerned with attitude, orbit and
mission planning applications, the ISC must now be concerned with such diverse pursuits as
science data visuaization and embedded flight software. The new ISC is a much more
heterogeneous organization than the FDD, so the need to understand the context of the data
collected is paramount. Direct comparison of branch to branch will be meaningless without an
appreciation of the context within which the data were collected.

titude

Mission
planning

Figure 3. Sample Application Domainsin ISC and FDD

Domains and organization

As mentioned above, the Information Systems Center is organizated into eight branches. Figure
1 shows the basic organizational structure of the ISC. We have found that several branches
appear to have a functional domain focus (e.g. flight software), specificaly these are 582, 583,
584 and 586, designated in Figure 1 with double borders. Those are contrasted with branches
that deal primarily with technology domains (e.g. advanced architectures), specifically 585,587
and 588. Code 581 is probably neither in the technology nor functional camp, they deal primarily
with the management of systems integration activities, this uniqueness is indicated in Figure 1
with a dashed border.

Matrixing and projects common to branches

In the questionnaire, branch management were asked to list the projects with which their branch
was involved. Figure 4 presents the common projects by branch. These are larger projects such
as the Hubble Space Telescope (HST) or Landsat-7, where several branches are involved.
Another question was the number of staff belonging to the branch but working outside it (or
matrixed). On average, 63% of ISC staff is matrixed. Both facts above suggest that the
organisation by branches is in some sense virtual, while the projects rather than the branches
control the process. This was aso confirmed by comments from branch managers. An
implication of this for the SEL is that to introduce any process improvement, it would appear
necessary to consider how to influence the project to adopt the new technology.

581 582 583 584G 584W 585 586 587 588

HST e O [[

SMEX o o

EOS e o o e O

EO-1 e o [

ISTP o [

Imp-8 [[
Landsat7 [e o [
JSWITCH o o

UuLDB o o

Figure 4 - Common Projects by Branch

Characterization of branches

Figure 5 presents the variation in staff numbers by branch. The total number of civil servantsin
ISC is 249, based on an aggregation of the questionnaire data. This total has been verified by a
check against the overall ISC roster. The total number of contractors in ISC is over 308 — the
exact number is difficult to determine because some branches were unable to specify their exact
number of contractors®.

'Staffing Numbers - The count of civil servants and subcontractors working for a branch or team is not unique, as
they can report to an entity (say the team) but be paid by another (another team or branch or project). Most
interviewees did not have both data, and reported the best estimate they had. An effort to collect the most accurate
datais underway and will be reported in the ISC Baselining final report.

Staffing
(see note on staffing numbers)

180
160
140
120
100

[DContractor Staff
M In-House Staff

Number of
employees 80

581 582 583 584W 584G 585 586 587 588 Average

Branch

Figure5 - Staff Numbers by Branch

Most notable here is that there is one very large branch (582), more than 2/3's of its personnel
are contractors; one very small branch (587), with no contractors whatsoever; and the rest are
mid-sized.

It is worthwhile to compare these figures to the SEL’s 1992 baseline of Code 500 [4]. Code 500
at that time contained responsibility for most of the same functional and technology domains that
the 1SC contains today. Code 500, however, did not employ all of the GSFC software personnel
working in these functional and technology domains; the Engineering Directorate (Code 700)
employed some of them. On the other side of the balance sheet, however, we must note that
some of the 1992 employees of Code 500 were analysts and other “non-software” types. These
personnel were largely transferred to “Centers’ other than the ISC in the recent GSFC
reorganization. With these differences between the Code 500 of 1992 and the ISC of today kept
in mind, let us proceed. In the 1992 baseline of code 500, it was found that approximately 1,600
of 5,000 staff (including contractors) were performing software-related functions (development,
maintenance, etc). The FDD had 700 staff, of which 250 were in software. This comparison (see
Figure 6) indicates that the I1SC has approximately twice as many IT-related staff as FDD.
However, they are significantly smaller in size than were the code 500 software people in 1992.

B Non software staff
O Software staff

2000

1000
0 — -

Code 500 FDD- ISC -
-1992 1992 1998

Figure 6 — Code 500, FDD and | SC staff

Branch management was also asked to estimate effort distribution within three categories:
Development, Maintenance and Other. The results for this question are shown in Figure 7. The
average is weighted for head-counts in the respective branches. Notable contrasts here are 581's
large amount of “other” activity — as a systems integration management branch they do hardly
any software development themselves. Also notable is 584 (Goddard real-time software)’s large
maintenance effort relative to development effort, and 586 (science data systems)’'s large
development effort relative to maintenance.

In comparison with the code 500 baseline, maintenance effort in the code 500 was a lower
proportion of total effort (24%) as opposed to 1SC's 35% of effort devoted to maintenance. This
is probably explained by the smaller amount of legacy code that the 1SC is responsible for
maintaining, in comparison to code 500.

Figure 8 turns our focus on software development effort alone, broken into the activities
‘requirements analysis’, ‘design’, ‘coding’, ‘testing’ and ‘other’. It is apparent that at this macro
process level, there is relatively little difference between 1SC's average development effort
distribution and that of the 1992 FDD. The ISC do a little more requirements, but that is the only
major difference. Again, we should stress that these data are management estimates, not the
actual recorded effort for each employee. In some cases, managers used heuristics such as
counting the number of testers in the organization to come up with the proportion of testing
being done. But did this then account for developers' unit testing? We do not know.

100%

90% T—

80% +—

70% +—

60% T— —

50% 1— —

40% {—| |

30% 1+— —

20% 1T— —

10% +—f —

0%

581 582 583 584W 584 585 586 587 588 Average

Branch

‘EI DevelopmentEIMaintenance 0 Other ‘

Figure 7 - Overall Effort by Branch

100%

80%

60%

40%

20% -~

0% -+

584W 585 Average

Branch

‘ m Requirements Analysis g Design gCoding Testing —Other ‘

Figure 8 - Development Effort by Branch

One possible interpretation of this data is that organizations that are more outwardly focused,
have had to put more effort into the requirements stage (and hence proportionally less in other
areas). Code 585 (science data systems) is an example of this — much of their work is for the
science community as a whole, afairly diverse and remotely located user population. Code 583

10

(mission applications) has a much more defined user base and devel ops software such as off-line
mission scheduling systems that can be precisely specified more easily up-front.

Some further observations about process, product and knowledge levels. Note that al branch
averages are weighted by the number of staff in the branch.

The percent of branches (including contractors) using “defined, written, advocated
software processes’ varied from 10-95%, with an average of 45%

The percent of branches (including contractors) using “ software standards’ ranged from
0-95%, with an average of 57%

The number of COTS products used varied from 2-10 with an average of 5.1. Note that
these figures are probably deflated due to some branches listing “DBMSS”’, or “lots” in
response to this question.

Overdll the use of C++, Java and Ada for new development is increasing, relative to
Assembly, Fortran and C. 12 languages are used across | SC as awhole.

The most significant causes of errors in operational software were (in the following order
of importance): ‘changing requirements, ‘missing requirements, ‘misinterpreted
requirements’, ‘coding errors, ‘interfaces’, ‘design errors’ and ‘ environment problems'.

Most branches consider themselves well-informed about ‘ prototyping’, ‘ object-oriented
technology’, ‘inspections/walkthroughs', and * COTS Integration’

Most branches consider themselves to have relatively little knowledge about ‘formal
methods’ and ‘ defect causal analysis’, except 586 science data systems

Most branches consider themselves to have relatively little knowledge about *‘information
hiding’ except 584W real-time systems (Wallops)

All branches consider themselves to have relatively little knowledge about ‘ Cleanroom
techniques'.

Only three branches produce ‘lessons learned’ documents at the end of a project.
Interestingly, one of these (584W) aso produce a document called ‘a day in the life
which serves to portray a typical day’s activities for a developer. This is considered
useful for training purposes.

In the process improvement area, several of the branches have ongoing activities:

Code 581 is funding this ISC baselining study, and is also leading the SO 9000 ISC
certification. It is aso pursuing an effort to define a core metrics set with the SEL and
Code 300.

Code 582 is encouraging reuse of both flight software and ground simulators, is looking
into additional opportunities for automatic code generation, and is pursuing the use of
COTS.

Code 583 has implemented the CORE TEAM approach, which is a type of process
improvement, and some parts of the branch are involved in some level of data collection.

11

Codes 584 and 587 are currently defining their processes, as a prelude to improving them.
Code 584 expressed a desire to define a multi-level process structure, to facilitate
modularization of processes.

Code 585, although it has not initiated a formal process improvement program, is using
guidelines in certain areas. The Code 585 personnel prefer to use guidelines, rather than
standards, because of the greater flexibility that guidelines provide.

Code 586 is engaged in process management activities, including implementation of 1SO
9001.

Code 588, for the most part, has not initiated any process improvement activities; they
are, however, currently working on a Technology Management Plan that is oriented
toward 1SO 9000. Code 588 is also trying to move the designation of their ultimate
customer organization earlier in the process of making a system operational.

Analysis and further activities

The ISC is a new organization that supports many of the key projects at NASA Goddard. It is
divided into management, technology and functional branches that represent a wide variety of
technical and functional domains. Here we try to summarize the main results of the baselining
effort and their implications for further SEL activities.

Diversity

The preliminary results of this baseline show that each branch is very different in terms of
personnel, process and product characteristics. The variations in effort distribution, languages
used, and products developed by the different branches provide surface indications of the
diversity among the branches. The implications are that it will not be possible to apply the same
models for cost and quality to each branch, as we could do to some extent within the more
homogeneous FDD. To understand how cost and quality relate, we must study them in the
context of each branch, team and/or project. Then, each model must be constructed and
calibrated to the given context in question. The development of different models however is not
the only challenge; these models must be capable of integration so that aggregated information
can be meaningfully provided for the whole of 1SC.

The NASA Core Software Metrics Initiative

The SEL and GSFC/NASA'’s Software Assurance Technology Center (SATC) [11] are currently
pursuing an initiative to define and implement a core set of software metrics, common to the
whole of NASA. For well over a year these two GSFC organizations have been working
together to define a core set of metrics.

The baselining has confirmed that there is an essential need for core metrics within the ISC. Due
to the diversity of the ISC, branches, teams and projects use different reporting units for metrics
such as product size, effort and defects. The core metrics initiative defines a set of metrics
capable of being used in different contexts, yet capable of providing a common abstraction level
to alow aggregation at the ISC level. Thisisessential not only for monitoring purposes, but also
for the model building needs mentioned above.

12

At this time, a draft version of the Core Metrics set, developed by the SEL and SATC, is
currently under review by the NASA Software Working Group. At the time this paper is written
the SATC and SEL web pages do not specifically call out the Core Metrics, in future that
information should be assessable through SATC and SEL web pages [11,12]. An experiment
within the I SC to validate these Core Metrics would serve both the NASA Core Metric Initiative
and the ISC’ s proactive drive toward process and product awareness and improvement.

Matrixing

The ISC is organized in branches and teams, but branch and team staff work, at 63% on average,
on projects outside the scope of 1SC, managed and funded by NASA Codes other than 500. In
particular, 95% of the staff belonging to Code 582 is matrixed outside ISC. This is not
surprising, as the ISC is meant to offer IT services to al of GSFC and NASA. However, a
number of issues are raised.

System and software engineering. Many projects where matrixed staff works are system
projects where software is only a part. The system issues (processes, technologies,
interfaces) should be taken into account in software processes too.

Ownership of processes and rights to modify. When projects are funded and ruled outside
ISC, ISC may or may not be free to decide on processes, standards, and organizations to
be used.

Diffusion of information. Matrixed personnel could physically work outside 1SC, with
increased difficulties in communication and diffusion of information about the SEL and
technology transfer or software process improvement projects.

The SEL could try to understand in more depth these issues with further studies. However, it
seems that, for the purposes of assessment, characterization, and model building, the team and
the projects are the more suitable units to be considered. This implies that, as projects and teams
are volatile, with a life span of months, measures and models should be highly versatile and
adaptive.

Also, the concept of Experience Factory, defined and used by the SEL in the past years, could
need some adaptation. Several levels of experience, and several levels of learning loops, can be
identified: at the individual, team, branch and ISC levels.

Finally, if projects and teams are volatile, and branches are virtual, individual persons are the
most stable and valuable resources to base process and product improvement on. Approaches
such as Watt Humphrey’ s Personal Software Process (PSP) could be used and adapted to the ISC
context. Specifically, the PSP does not consider sharing experiences and improvements with
peers, and should be extended in this direction to integrate concepts from the Experience
Factory.

COTS

All branches report the use of COTS. The SEL should support teams and branches in COTS
related activities: evaluation and selection, testing and certification, interaction with producer,
documentation and diffusion of information. The SEL’s experience in COTS processes will be
of benefit to the ISC and the diversity of the ISC offers opportunities for case studies to further

13

validate the COTS process model [9]. This study concluded with recommendations for further
work to build cost models, risk analysis, and process models. Since, COTS remains a buzzword
with different meanings for different people. Another action for the SEL is the definition of a set
of terms and classification tools for the different concepts and artifacts currently considered
under the umbrellaterm COTS.

Finally, COTS should be considered in the broader context of reuse and related technological
and organizational issues: domain analysis and engineering, product line engineering, reusable
libraries, frameworks, design patterns, mechanisms and standards (Com, Corba, Active-X, Java
RMI, Java beans, €tc.).

Internal technology transfer

There would seem to be opportunities for greater synergies within 1SC to do internal technology
transfer so that the advanced technologies and research efforts of branches 585, 587 and 588 are
successfully transitioned into practice in branches 582, 583, 584 and 586.

The past work of the SEL within Goddard has shown the need to understand, assess and package
technology to insure its successful introduction. Possibly the SEL in code 581 can play arolein
furthering a controlled and systematic transfer of this technology to the functional branches, as
well as helping insure that the advanced technology branches work in relevant areas amenable to
future technology transfer.

The SEL could assist by defining a methodology to evaluate if and how a technology
successfully applied in one context (branch, team, project) can be transferred to another context.

Reuse and frameworks

Several products in ISC are developed and mantained for years and possibly customised in
different versions. The overal cost of a product during the complete service cycle can be
decreased by technologies such as architecture and framework-based reuse. For example Code
582 (flight software) is exploring this road by developing a new architectural design for on-board
shuttle navigation control.

The SEL could offer support to organize, measure and document such efforts with two main
goals. Promote the success of the reuse effort inside a branch. And acquire methodological
experience to replicate the same effort in other branches (see aso the Internal Technology
Transfer subsection).

Requirements instability

Requirements, and specifically requirements instability, are a common source of problems for
I SC teams. Several lines of intervention are available for the SEL :

Experimentation with novel techniques for requirements capture and management.

Adaptation of and experimentation with of techniques for early detection of defects in
requirements, such as requirement reading techniques.

Adaptation of and experimentation with new lifecycles for early verification of
reguirements, such as prototyping, iterative lifecycles, joint application development.

14

Acknowledgements

Thiswork was funded by NASA grant NCC-5170, and the following NASA Contracts: CNMOS
and CSOC.

References

[1] V. R. Basili, G. Cddiera, F. McGarry, R. Pajerski, G. Page, S. Waligora, The Software
Engineering Laboratory - an Operational Software Experience Factory, International Conference
on Software Engineering, May, 1992, pp. 370-381.

[2] R. Basili, H. D. Rombach, The TAME Project: Towards Improvement-Oriented Software
Environments, |EEE Transactions on Software Engineering, vol. SE-14, no.6, June 1988.

[3] Kea H., Goddard's New Integrated Approach to Information Technology, 23" Software
Engineering Workshop, Nasa/ GFSC, December 1998.

[4] NASA, Profile of Software Within Code 500 at Goddard Space Flight Center, Technical
report R0O1-92, 1992.

[5] NASA, Profile of Software at the Goddard Space Flight Center, Technical report RPT-002-
94, June 1994.

[6] NASA, Profile of Software at NASA, Technical report RPT-93, December 1993.

[7] NASA, An Oveview of the Software Engineering Lab, Technical report SEL-94-005,
December 1994.

[8] NASA/ISC, The ISC home page, http://isc.gsfc.nasa.gov/default.htm.

[9INASA/SEL, SEL COTS Study, Phase 1, Initial Characterization Study report, SEL-98-001,
August 1998.

[10] NASA/SEL, ISC Basdining documentation, http://sel.gsfc.nasa.gov/doc-st/tech-
st/sew23/baselining.htm

[11] NASA/SATC, The SATC home page, http://satc.gsfc.nasa.gov/
[12] NASA/SEL, The SEL home page, http://sel.gsfc.nasa.gov/

15

Baselining the New GSFC

Bcnfarma tion Systems Center

" TheFoundation for Verifiable
Softwar e Process | mprovement

A. Parra, D. Schultz, J. Boger, S. Condon, CSC
V. Baslli, R. Webby, M. Morisio, D. Yakimovich, J. Carver, M. Stark, U. of MD
S. Kraft, GSC

Prior Basaline Studies

Many Baselines of FDD

Prof|

" Profi

e of GSFC Code 500 (1993)
e of GSFC (1994)

Ile of NASA (1995)

) - f?
What saBaseIme.‘

organization

o |dentify software characteristics product
» Characterize process used process
e Define goals

* Develop models to measure improvements

Gather, sift, & analyze data to build baselines

Role of Basdlines in Process |mprovement

PACKAGE

Integrate the improvement into your business

» Update standards
* Refine training

* Tailor process based on experiments

lterate /

ASSESS

Select/define, implement, & evaluate an improvement locally
Goals » Will particular reading techniques improve quality?
* Will OOT lead to higher reuse?

UNDERSTAND » Will a different testing technique reduce costs?

Gather, sift, and analyze data to build baselines

* Identify software characteristics
» Characterize process used
» Define goals

EXAMPLES

TIME -

Produce a basealine characterization

- branches & teams
E C‘nf{:-rma tion Systems Center
Short term benefits - Bﬁ ﬁ
share lessons learned

better understanding of the ISC

Long term benefits -
demonstrable product and process improvements

Methods of | SC Baseline Study

e Gather information at two levels

— Branch N @

— Team

e Gather information in two modes ‘V!

— Structured interviews
— Questionnaires

 Analyze data
e Vefy data& results with data provider

Next Steps for the Baselining

o Complete team level data extraction;
analyze team level results

e Compare branch and team level dataresults
e Publish ISC basdline

o Study |SC environment

e Build modelsfor ISC

The Diversity of I1SC

Application Domains
Matrixing

COTS Usage
Software Activities

Application Domains

Not
Matrixed

Matrixing

Matrixed within 1SC

3%

Matrixed outside |SC

10

COTS Usage

A

 Heavy COTS usage across all
branches

% Diverse COTS products support
unigue Application Domains

11

percent effort

Software Activities

60%
50%
40%
40%
30%
20% 2004 20%
10%
- 5% 5%
0%
0 . '
Requwem_ents Design Code Test Other
Analysis

™ Branch A - 90% dev./ 10% maint.
B Branch B - 50% dev./ 40% maint.

12

L anguage Mix

30 Java

10 4GL

- C++

Existing Software New Software

Initial Conclusions & Implications

Diverse Domain - multiple models
Matrixing - opportunity for Tech Transfer
COTS - important issue, continue studies
Software activities - multiple models
Language Mix - evolution within a branch

14

Proposed Focus
based on Baselining Experience

e Cost estimation/defect models
e COTS Studies

e Process Improvement Program
— Totallor & integrate in evolving organizations

15

Using Experiments to Build a Body of Knowledge

Victor Basili Forrest Shull Filippo Lanubile
Fraunhofer Center Maryland Institute for Advanced Computer Studies Dipartimento di Informatica
and Computer Science Dept. Computer Science Dept. Universita' di Bari
University of Maryland University of Maryland Via Orabona, 4
College Park, MD 20742, USA College Park, MD 20742, USA 70126 Bari, Italia
basili@cs.umd.edu fshull@cs.umd.edu lanubile@di.uniba.it
Abstract

Experimentation in software engineering is important but difficult. One reason it is so difficult is that there
are alarge number of context variables, and so creating a cohesive understanding of experimental results
requires a mechanism for motivating studies and integrating results. This paper argues for the necessity of a
framework for organizing sets of related studies. With such a framework, experiments can be viewed as
part of common families of studies, rather than being isolated events. Common families of studies can
contribute to important and relevant hypotheses that may not be suggested by individual experiments. A
framework also facilitates building knowledge in an incremental manner through the replication of
experiments within families of studies.

Building knowledge in this way requires a community of researchers that can replicate studies, vary context
variables, and build abstract models that represent the common observations about the discipline. This
paper also presents guidelines for lab packages, meant to encourage and support replications, that
encapsulate materials, methods, and experiences concerning software engineering experiments.

1. Introduction

Experimentation in softwar e engineering is necessary. Common wisdom, intuition, speculation and
proofs of concepts are not reliable sources of credible knowledge. On the contrary, progressin any
discipline involves building models that can be tested, through empirical study, to check whether the
current understanding of the field is correct’. Progress comes when what is actually true can be separated
from what is only believed to be true. To accomplish this, the scientific method supports the building of
knowledge through an iterative process of model building, prediction, observation, and analysis. It requires
that no confidence be placed in atheory that has not stood up to rigorous deductive testing [21]. That is,
any scientific theory must be (1) falsifiable, (2) logically consistent, (3) at least as predictive as other
competing theories, and (4) its predictions have been confirmed by observations during tests for
falsification. According to Popper, atheory can only be shown to be false or not yet false; researchers only
become confident in a theory when it has survived numerous attempts made at its falsification. This
paradigm is a necessary step for ensuring that opinion or desire does not influence knowledge.

Experimentation in softwar e engineering is difficult. Carrying out empirical work is complex and time
consuming; thisis especialy true for software engineering. Unlike manufacturing, we do not build the
same product, over and over, to meet a particular set of specifications. Software is developed and each

! For the purpose of this paper, we use the definitions of some key terms from [15] and [1]. An empirical
study, in abroad sense, is an act or operation for the purpose of discovering something unknown or of
testing a hypothesis, involving an investigator gathering data and performing analysis to determine what the
datamean. This covers various forms of research strategies, including all forms of experiments, qualitative
studies, surveys, and archival analyses. An experiment is aform of empirical study where the researcher
has control over some of the conditions in which the study takes place and control over the independent
variables being studied; an operation carried out under controlled conditions in order to test a hypothesis
against observation. This term thus includes quasi-experiments and pre-experimental designs.

A theory is a possible explanation of some phenomenon. Any theory is made up of a set of hypotheses. A
hypothesisis an educated guess that there exists (1) a (causal) relation among constructs of theoretical
interest; (2) arelation between a construct and observable indicators (how the construct can be observed).
A model is asimplified representation of a system or phenomenon; it may or may not be mathematical or
even formal; it can be atheory.

product is different from the last. So, software artifacts do not provide us with a large set of data points
permitting sufficient statistical power for confirming or rejecting a hypothesis. Unlike physics, most of the
technol ogies and theories in software engineering are human-based, and so variation in human ability tends
to obscure experimental effects. Human factors tend to increase the costs of experimentation while making
it more difficult to achieve statistical significance.

Abstracting conclusions from empirical studiesin softwar e engineering research isdifficult. An
important reason why experimentation in software engineering is so hard is that the results of almost any
process depend to alarge degree on a potentially large number of relevant context variables. Because of
this, we cannot a priori assume that the results of any study apply outside the specific environment in
which it was run. For isolated studies, even if they are themselves well-run, it is difficult to understand how
widely applicable the results are, and thus to assess the true contribution to the field.

As an example, consider the following study:

- Basili/Reiter. This study was undertaken in 1976 in order to characterize and evaluate the
development processes of development teams using a disciplined methodology. The effects of the
team methodology were contrasted with control groups made up of development teams using an "ad
hoc" development strategy, and with individual developers (also "ad hoc"). Hypotheses were proposed:
that (BR1) adisciplined approach should reduce the average cost and complexity (faults and rework)
of the process and (BR2) the disciplined team should behave more like an individual than ateam in
terms of the resulting product. The study addressed these hypotheses by evaluating particular methods
(such as chief programmer teams, top down design, and reviews) as they were applied in a classroom
setting. [7]

This study, like any other, required the experimenters to construct models of the processes studied, models
of effectiveness, and models of the context in which the study was run. Replications that alter key attributes
of these models are then necessary to build up knowledge about whether the results hold under other
conditions. Unfortunately, in software engineering, too many studies tend to be isolated and are not
replicated, either by the same researchers or by others. Basili/Reiter was a rigorous study, but
unfortunately never led to alarger body of work on this subject. The specific experiment was not
replicated, and the applicability of the hypothesesin other contexts was not studied. Thusit was never
mvestlgated whether the results hold, for example:

for software developers at different levels of experience (the original experiment used university

students);

if development teams are composed differently (the original experiment used only 3-person teams);

if another disciplined methodology had been used (i.e., were the benefits observed due to the particular

methodol ogy used in the experiment, or would they be observed for any disciplined methodology?).

2. A Motivating Example: Software Reading Techniques

Y et even when replications are run, it's hard to know how to abstract important knowledge without a
framework for relating the studies. To illustrate, we present our work on reading techniques. Reading
techniques are procedural techniques, each aimed at a specific devel opment task, which software
developers can follow in order to obtain the information they need to accomplish that task effectively [2, 3].
We were interested in studying reading techniques in order to determine if beneficial experience and work
practices could be distilled into procedural form, and used effectively on real projects. We felt that reading
techniques were of relevance and value to the software engineering community, since reading software
documents (such as regquirements, design, code, etc.) is akey technical activity. Developers are often called
upon to read software documents in order to extract specific information for important software tasks, e.g.
to read a requirements document in order to find defects during an inspection, or an Object-Oriented design
in order to identify reusable components. However, while developers are usually taught how to write
software documents, the skills required for effecting reading are rarely taught and must be built up through
experience. In fact, we felt that research into reading could provide amodel for how to effectively write
documents as well: by understanding how readers perform more effectively it may be possible to write
documents in away that facilitates the task.

However, the concept of reading techniques cannot be studied in isolation. Like any other software process,
reading techniques must be tailored to the environment in which they are run. Our aim in this research was
to generate sets of reading techniques that were procedurally defined, tailorable to the environment, aimed
at accomplishing a particular task, and specific to the particular document and notation on which they
would be applied. This has led a series of studies in which we evaluated the following types of reading
techniques:

Defect-Based Reading (DBR) focused on defect detection in requirements, where the requirements
were expressed using a state machine notation called SCR [13, 22].

Perspective-Based Reading (PBR) also focused on defect detection in requirements, but for
requirements expressed in natural language [4, 16].

Use-Based Reading (UBR) focused on anomaly detection in user interfaces [27].

Second Version of PBR (PBR2) consisted of new techniques that were more procedurally-oriented
versions of the earlier set of PBR techniques. In particular, we made the techniques more specificin all
of their steps[24].

Scope-Based Reading (SBR) consisted of two reading techniques that were devel oped for learning
about an Object-Oriented framework in order to reuseit [10, 23].

A framework that makes explicit the different models used in these experiments would have many benefits.
Such a framework would document the key choices made during experimental design, along with their
rationales. The framework could be used to choose a focus for future studies: i.e., help determine the
important attributes of the models used in an experiment, and which should be held constant and which
varied in future studies. The ultimate objective isto build up a unifying theory by creating alist of the
specific hypotheses investigated in an area, and how similar or different they all are.

Using an organizational framework also allows other experimenters to understand where different choices
could have been made in defining models and hypotheses, and raises questions as to their likely outcome.
Because these frameworks provide a mechanism by which different studies can be compared, they help to
organize related studies and to tease out the true effects of both the process being studied and the
environmental variables.

3. The GQM Goal Template as a Tool for Experimentation

Examples of such organizational frameworks do exist in the literature, e.g. [9, 17, 20]. For the purpose of
this paper we find the Goal/Question/Metric (GQM) Goa Template [8] useful. The GQM method was
defined as a mechanism for defining and interpreting a set of operational goals using measurement. It
represents a top-down systematic approach for tailoring and integrating goals with models of software
processes, products, and quality perspectives, based upon the specific needs of a project and organization.

The GQM goal template is atool that can be used to articulate the purpose of any study. It ties together the

important models, and provides a basis against which the appropriateness of a study's specific hypotheses,

and dependent and independent variables, may be evaluated. There are five parametersin a GQM goal

template:
- object of study: a process, product or any other experience model

purpose: to characterize (what isit?), evaluate (is it good?), predict (can | estimate something in

the future?), control (can | manipulate events?), improve (can | improve events?)

focus: model aimed at viewing the aspect of the object of study that is of interest, e.g., reliability

of the product, defect detection/prevention capability of the process, accuracy of the cost model

point of view: e.g., the perspective of the person needing the information, e.g., in theory testing the

point of view isusualy the researcher trying to gain some knowledge

context: models aimed at describing environment in which the measurement is taken

For example, the goal of the Basili/Reiter study, previously described, might be instantiated as:
To analyze the devel opment processes of a 1) disciplined-methodol ogy team approach, 2) ad hoc team
approach, and 3) ad hoc individual approach
for the purpose of characterization and evaluation

with respect to cost and complexity (faults and rework) of the process
from the point of view of the developer and project manager
in the context of an advanced university classroom

Due to the nature of software engineering research, instantiated goals tend to show certain similarities. The
purpose of studiesis often evaluation; that is, researchers tend to study software technologiesin order to
assess their effect on development. For our purposes, the point of view can be considered to be that of the
researcher or knowledge-builder. While studies can be run from the point of view of the project manager,
i.e. requiring some immediate feedback as to effects on effort and schedule, published studies have usually
undergone additional, post-hoc analysis.

The remaining fieldsin the template require the construction of more complicated models, but still show
some similarities. The object of study is often (but not always) a process; researchers are often concerned
with evaluating whether or not a particular development process represents an improvement to the way
softwareis built. (E.g.: Does Object-Oriented Analysis lead to an improved implementation? Does an
investment in reviews lead to less buggy, more reliable systems? Does reuse allow quality systemsto be
built more cheaply?) When the object of study is a process, the focus of the evaluation is the process effect.
The experimenter may measure its effect on a product, that is, whether the process |eads to some desired
attribute in a software work product. Or, the experimenter may attempt to capture its effect on people, e.g.
whether practitioners were comfortable executing the process or found it tedious and infeasible. Finally, the
context field should include alarge number of environmental variables and therefore tends to exhibit the
most variability. Studies may be run on students or experts; under time constraints, or not; in well-
understood application domains, or in cutting-edge areas. There are numerous such variables that may
influence the results of applying atechnique.

For the remainder of this paper, we will illustrate our conclusions by concentrating on studies that
investigate process characteristics with respect to their effects on products. A GQM template for this class
of studiesis:
Analyze processes to evaluate their effectiveness on a product from the point of view of the
knowledge builder in the context of (aparticular variable set).

For particular studiesin this class, constructing a complete GQM template requires making explicit the
process (object of study), the effect on the product (focus), and context models in the experiment. Making
these models explicit is necessary in order to understand the conditions under which the experimental
results hold.

For example, consider the GQM templates for the list of reading technique experiments described in the
previous section. There are many ways of classifying processes, but we might first classify processes by
scope as.

Techniques (processes that can be followed to accomplish some specific task),

Methods? (processes augmented with information concerning when and how the process should be

applied),

Life Cycle Models (processes which describe the entire software development process).
Each of these categories could be subdivided in turn. The set of techniques, for example, could be classified
based on the specific task as: Reading, Testing, Designing, and so on. We have found it helpful to think of
the range of values as organized in a hierarchical fashion, in which more general values are found at the top
of the tree, and each level of the tree represents anew level of detail. (Figure 1)

Selecting a particular type of process for study, our GQM template then becomes:
Analyze reading techniques to evaluate their effectiveness on a product from the point of view of
the knowledge builder in the context of a particular variable set

2 The definitions of "technique" and "method" are adapted from [5].

Process

Life Cycle Model Method Techni que
_ _ Walk-
Vaterfall spiral . . . Inspection Thr ough Coe Reading Testing

Figure 1: A portion of the hierarchy of possible values for describing software
processes.

The reading technigue experiments were concerned with studying the effect of the reading technique on a
product. So, the model of focus needs to specify both how effectiveness is to be measured and the product
on which the evaluation is performed.We find it useful to divide the set of effectiveness measures into
analysis and construction measures, based on whether the goal of the processisto analyze intrinsic
properties of adocument or to useit in building a new system. Each of these categories can be further
broken down into more specific types of process goals, for which different effectiveness measures may
apply (Fig. 2). For example, the effectiveness of a process for performing maintenance can be evaluated by
how that process effects the cost of making a change to the system. The effectiveness of a process for
detecting defects in a document can be measured by the number of faultsit helpsfind. Of course, many
more measures exist than will fit into Figure 2. For instance, rather than measure the number of faults a
defect detection process yields, it might be more appropriate to measure the number of errors®, or the
amount of effort required, among other things.

Ef fecti veness

Anal ysi s Construction
Def ect Usability Lo Reuse Mai nt enance
Det ecti on \
of # of # of Cost of Cost of Cost of
faults errors anonmal i es finding integrating meki ng a
detected detected detected conmponents conponents change

Figure 2: A portion of the hierarchy of possible values for
describing the effectiveness of software processes

Similarly, a software document can be classified according to the model of a software system it contains (a
relatively well-defined set) and further subdivided into the specific notations that may be used (Fig.3). The
main purpose of organizing the possible values hierarchically isto organize a conception of the problem
space that can be used by others for classifying their own experiments. The actual criteriaused are
somewhat subjective; naturally there are multiple criteriafor classifying processes, effectiveness measures,
and software documents, but we have selected just those that have contributed to our conception of reading
techniques.

% Here we are using the terms "faults’ and "errors" according to the | EEE standard definitions [14], in
which "fault" refers to defects appearing in some artifact while "error” refers to an underlying human
misconception that may be translated into faults.

Docunent

Requi rement s Desi gn
Natm/\ Datam
Language Di agr ams Oriented ' ructure

Figure 3: A portion of the hierarchy of possible values for describing software
docunments.

Thus a GQM template for the PBR experiment could be:
Analyze reading techniques to evaluate their ability to detect defects in a Requirements Document
written in English from the point of view of the knowledge builder in the context of a particular
variable set .

A GQM goal is not meant to be a definitive description, but reflects the interests and priorities of the
experimenter. If we were to study the process model for the reading techniques in each experiment in more
detail, we would see that each technique is tailored to a specific task (e.g., analysis or construction, etc.)
and to a specific document. Thisiswhat characterizes the reading techniques and distinguishes them from
one another. Thus the process goal's used to classify measures of effectivenessin Figure 2 can be easily
adapted to describe the processes themselves (Figure 4). The distinction between analysis and construction
process goals can apply directly to processes. That is, we hypothesize that analysis tasks differ sufficiently
from construction tasks that, along with differences in the way they may be evaluated for effectiveness,
there may also be different guidelines used in their construction. Thus figures 2 and 3 can also be
mechanisms for identifying process model attributes. They should be accounted for in the process model as
well as the effect on process.

Process Goal

Anal ysi s Construction

Def ect Usability L Reuse Mai nt enance
Det ecti on

Figure 4: A portion of the hierarchy of possible values for describing the goal of
a software engineering process.

Thus we can say that we are;
analyzing a reading technique for the purpose of evaluating its ability to detect defects in a natural
language requirements document

or we can say that we are:
analyzing a reading technique tailored to defect detection in natural language requirements for the
purpose of evaluation.

It depends on whether we are emphasizing the definition of the process or of its effectiveness.

In linking goal templates to hypotheses, we can think of the process model (object of study) as the
independent variable, the effect on product (focus) as the dependent variable, and the context variables as
the variables that exist in the environment of the experiment. The differences or similarities between
experimental hypotheses can then be described in terms of these hierarchies of possible values. For
example, consider the studies of DBR and PBR. In both cases, the process model was focused on the same

task (defect detection); although the notation differed, both were also focused on the same document
(requirements). If all other attributes for process, product, and context models were held constant, we could
begin to think of hypotheses at a higher level of abstraction. That is, instead of the hypothesis:
Subjects using a reading technique tailored to defect detection in natural language
requirements ar e mor e effective than subjects using ad hoc techniquesfor thistask
The following hypothesis might be more useful:
Subjects using reading techniquestailored to defect detection in requirementsare more
effective than subjects using ad hoc techniquesfor thistask.
The difference between these hypotheses is that the focus of the study is described at a higher level of
abstraction for the second hypothesis (requirements) than for the first (natural language requirements).

This difference in abstraction makes the second hypothesis more difficult to test. In fact, probably no single
study could ever give us overwhelming evidence asto its validity, or lack thereof. Testing the second
hypothesis would require some idea of what types of requirements notation are of interest to practitioners.
Building up a convincing body of evidence requires the combined analysis of multiple studies of specific
reading techniques for defect detection in requirements. But the effort required to formulate the hypothesis
and begin building a body of evidence helps advance the field of software engineering. At best, the
evidence can lead to the growth of a body of knowledge, containing basic and important theories
underlying some aspect of the field. At worst, the effort spent in specifying the models forces us to think
more deeply about the relevant ways of characterizing software engineering models that we, as researchers,
are implicitly constructing anyway.

The above discussion should not be taken to imply that the attributes identified in Figures 1 through 4 are
the only ones that are important, or for which hierarchies of possible values exist. To choose another
example, in specifying the model of the context it is amost always important to characterize the experience
of the subjects of the experiment. The most appropriate way of characterizing experience depends on many
things; two possibilities are proposed in Figure 5.

Experi ence

St udent s Pr of essi onal s

Experi ence

Never used Lear ned Appl i ed Appl i ed Appl i ed
process process in a process on process on 2- process on >3
bef ore cl ass one project 3 projects proj ects

Figure 5: Two possible value hierarchies for measuring subject experience

The trees shown in Figure 5 present two different ways of characterizing experience. The firstisasimpler
way of characterizing the attribute that distinguishes only between subjects who are still learning software
engineering principles versus those who have applied them on real projects. The second hierarchy attempts
to place finer distinctions on the amount of experience a subject has applying a particular process. Each
may be appropriate to different circumstances.[Fs1]

4. Replicating Experiments

In preceding sections of this paper, we have tried to raise several reasons why families of replicated
experiments are necessary for building up bodies of knowledge about hypotheses. Another reason for
running replicationsis that they can increase the amount of confidence in results by addressing certain
threats to validity: Internal validity defines the degree of confidence in a cause-effect relationship between
factors of interest and the observed results, while external validity defines the extent to which the

conclusions from the experimental context can be generalized to the context specified in the research
hypothesis[11]. In this section, we discuss replications in more detail and look at the practical
considerations that result.

Our primary strategy for supporting replications in practice has been the creation of lab packages, which
collect information on an experiment such as the experimental design, the artifacts and processes used in
the experiment, the methods used during the experimental analysis, and the motivation behind the key
design decisions. Our hope has been that the existence of such packages would simplify the process of
replicating an experiment and hence encourage more replications in the discipline. Several replications
have been carried out in this manner and have contributed to a growing body of knowledge on reading
techniques.

4.1. Types of Replications

Since we consider that replications may be undertaken for various reasons, we have found it useful to
enumerate the various reasons, each of which hasits own requirements for the lab package. In our view the
types of replications that need to be supported can be grouped into 3 major categories:

1. Replicationsthat do not vary any resear ch hypothesis. Replications of this type vary none of the
dependent or independent variables of the original experiment.

1.1. Strict replications (i.e. replications that duplicate as accurately as possible the original
experiment). These replications are necessary to increase confidence in the validity of the
experiment. They demonstrate that the results from the original experiment are repeatable, and
have been reported accurately by the original experimenters.

1.2. Replicationsthat vary the manner in which the experiment isrun. These studies seek to
increase our confidence in experimental results by addressing the same problem as previous
experiments, but altering the details of the experiment so that certain internal threats to validity
are addressed. For example, areplication may vary the order of activities to avoid the possibility
that results depend not on the process used, but on the order in which activities in the experiment
are completed.

The attempt to compensate for threats to internal validity may also lead to other types of changes.
For example, a process may be modified so that the researchers can assess the amount of process
conformance of subjects. Although the aim of the change may have been to address internal
validity, the new process should be evaluated in order to understand whether unanticipated effects
on process effectiveness have resulted. Thus such areplication would fall into the second major
category, discussed below.

2. Replicationsthat vary the research hypotheses. Replications of thistype vary attributes of the
process, product, and context models but remain at the same level of specificity asthe original
experiment.

2.1. Replicationsthat vary variablesintrinsic to the object of study (i.e. independent variables).
These replications investigate what aspects of the process are important by systematically varying
intrinsic properties of the process and examining the results. This type of experiment requires the
process to be supplied in sufficient detail that changes can be made. Thisimplies that the original
experimenters must provide the rationales for the design decisions made as well as the finished
product. For example, researchers may question whether the specificity at which the processis
described affects the results of applying the process. In this sense, the study of PBR2 may be seen
as areplication of the study of PBR, in which the level of specificity of the process was varied
but all other attributes of the process model remained the same.

2.2. Replicationsthat vary variablesintrinsic to the focus of the evaluation (i.e. dependent
variables). Replications of this type may vary the ways in which effectivenessis measured, in
order to understand for what dimensions of atask a process results in the most gain. For example,
areplication might choose another effectiveness measure from those listed in Figure 2,
investigating whether a defect detection process is more beneficial for finding errors than faults.

Other aspects of the focus model might be varied instead, e.g. a process might be evaluated on a
document of the same type but different notation to seeif it is equally effective (see Figure 3).

2.3. Replicationsthat vary context variablesin the environment in which the solution is
evaluated. These studies can identify potentially important environmental factors that affect the
results of the process under investigation and thus help understand its external validity. For
example, replications may be run using the same process and product models as the original
experiment but on professionals instead of students (see Figure 5) to seeif the same results are
obtained.

3. Replicationsthat extend the theory. These replications help determine the limits to the effectiveness
of aprocess, by making large changes to the process, product, and/or context modelsto seeif basic
principles till hold. We discussed replications in the previous category as replacing the value of some
variable (e.g. document on which the process was applied, Figure 3) with another, equally specific
value (e.g. SCR requirements instead of English-language requirements). Replications in this category,
however, can be thought of as replacing an attribute of a process, product, or context model with a
value at a higher level of abstraction (i.e. from ahigher level in the hierarchy). Again using Figure 3,
researchers may choose to study whether atype of processis applicable to requirements documentsin
general, rather than limiting their scope to a specific kind. The type of hypotheses associated with such
replications was discussed in section 3.

4.2 Implications for Lab Package Design

In software engineering research, there has been a movement toward the reuse of physica artifacts and
concrete processes between experiments. Thisisindeed a useful beginning. The cost of an experiment is
greatly increased if the preparation of multiple artifactsis necessary. Creating artifacts which are
representative of those used in real development projectsis difficult and time consuming. Reusing artifacts
can thus reduce the time and cost needed for experimentation. A more significant benefit is that reuse
allows the opportunity to build up knowledge about the actual use of particular, non-trivial artifactsin
practice. Thus replications (and experimentation in general) could be facilitated if there were repositories
of reusable artifacts of different types (e.g. requirements) which have a history of reuse and which,
therefore, are well understood. (A model for such repositories could be the repository of system
architectures [12], where the relevant attributes of each design in the repository are known and described.)

A first step towards this goal is the construction of web-based laboratory packages. At the most basic level,
these packages allow an independent experimenter to download experimental materials, either for reuse or
for better understanding. In this way, these packages support strict replications (as defined in section 4.1),
which require that the processes and artifacts used in the original experiment be made available to
independent researchers.

However, web-based lab packages should be designed to support more sophisticated types of replications
aswell. For example, packages should assist other experimentersin understanding and addressing the
threats to validity in order to support replications that vary some aspects of the experimental setup. Due to
the constraints imposed by the setting in which software engineering research is conducted, it is almost
never possible to rule out every single threat to validity. Choosing the “least bad” set of threats given the
goal of the experiment is necessary. Lab packages need to acknowledge this fact and make the analysis of
the constraints and the threats to validity explicit, so that other studies may use different experimental
designs (that may have other threats to validity of their own) to rule out these threats.

Replications that seek to vary the detailed hypotheses have additional requirements if the lab package isto
support them aswell. For example, in order for other experimentersto effectively vary attributes of the
object of study, the original process must be explained in sufficient detail that other researchers can draw
their own conclusions about key variables. Since it is unreasonable to expect the original experimenters to
determine all of the key variables a priori, lab packages must provide rationales for key experimental
context decisions so that other experimentalists can determine feasible points of variation of interest to
themselves. Similarly, lab packages must specify context variablesin sufficient detail that feasible changes

to the environment can be identified and hypotheses made about their effects on the results.

Finally, in order to build up a body of knowledge about software engineering theories, researchers should
know which experiments have been run that offer related results. Therefore, lab packages for related
experiments should be linked, in order to collect different experiments that address different areas of the
problem space, and contribute evidence relevant to basic theories. The web is an ideal medium for such
packages since links can be added dynamically, pointing to new, related lab packages as they become
available. Thusit isto be hoped that lab packages are “living documents” that are changed and updated to
reflect our current understanding of the experiments they describe.

L ab packages have been our preferred method for facilitating the abstraction of results and experiences
from series of well-designed studies. Interested readers are referred to existing examples of lab packages:
[25, 26]. By collecting detailed information and results on specific experiments, they summarize our
knowledge about specific processes. They record the design and analysis methods used and may suggest
new ones. Additionally, by linking related studies they can help experimenters understand what factors do
or do not impact effectiveness.

4.3. The Experimental Community

A group of researchers, from both industry and academia, has been organized since 1993 for the purpose of
facilitating the replication of experiments. The group is called ISERN, the International Software
Engineering Research Network, and includes membersin North America, Europe, Asia, and Australia.
ISERN members publish common technical reports, exchange visitors, and organize annual meetings to
share experiences on software engineering experimentation®. They have begun replicating experiments to
better understanding the success factors of inspection and reading.

The Empirical Software Engineering journal has also helped build an experimental community by
providing aforum for publishing descriptions of empirical studies and their replications. An especially
noteworthy aspect of the journal isthat it is open to publishing replicated studies that, while rigorously
planned and analyzed, yield unexpected results that did not confirm the original study. Although it has
traditionally been difficult to publish such “unsuccessful” studies in the software engineering literature, this
knowledge must be made available if the community isto build a complete and unbiased body of
knowledge concerning software technologies.

5. Conclusions

The above discussion leads us to propose that the following criteria are necessary before we can begin to

build up comprehensive bodies of knowledge in areas of software engineering:

1. Hypothesesthat are of interest to the software engineering community and are written in a context that
allow for awell defined experiment;

2. Context variables, suggested by the hypotheses, that can be changed to allow for variation of the
experimental design (to make up for validity threats) and the context of experimentation;

3. A sufficient amount of information so that the experiment can be replicated and built upon; and

4. A community of researchers that understand experimentation, the need for replication, and are willing
to collaborate and replicate.

With respect to the Basili/Reiter study introduced in section 1, we can note that while it satisfied criteria 1
and 3, it failed with respect to criteria 2 and 4. It was not suggested by the authors that other researchers
might vary the design or manipulate the processes or criteria used for evaluation (although the analysis of
the datawas varied in alater study [6]). Nor was there a community of researchers willing to analyze the
hypotheses even if suggestions for replication had been made.

In contrast, the set of experiments on reading, discussed in aworking group at the 1997 annual meeting of

* More information is available at the URL http://wwwagse.informatik.uni-kl.de/l SERN/isern.html

10

ISERN [18], is an example that we have built up a body of knowledge by independent researchers working
on different parts of the problem and exposing their conclusions to different plausible rival hypotheses. We
have shown in this paper that experimental constraints in software engineering research make it very
difficult, and even impossible, to design a perfect single study. In order to rule out the threats to validity, it
ismore realistic to rely on the "parsimony" concept rather than being frustrated because of trying to
completely remove them. This appeal to parsimony is based on the assumption that the evidence for an
experimental effect is more credible if that effect can be observed in numerous and independent
experiments each with different threatsto validity [11].

A second conclusion is that empirical research must be a collaborative activity because of the huge number
of problems, variables, and issues to consider. This complexity can be faced with extensive brainstorming,
carefully designing complementary studies that provide coverage of the problem and solution space, and
reciprocal verification.

It is our contention that interesting and relevant hypotheses can be identified and investigated effectively if
empirical work is organized in the form of families of related experiments. In this paper, we have raised
severa reasons why such families are necessary:

To investigate the effects of aternative values for important attributes of the experimental models;

To vary the strategy with which detailed hypotheses are investigated,;

To make up for certain threats to validity that often arisein realistically designed experiments.

Discussion within the experimental community is also needed to address other issues, such as what
constitutes an “acceptable” level of confidence in the hypotheses that we address as a community. By
running carefully designed replications, we can address threats to validity in specific experiments and
accumul ate evidence about hypotheses. However, we are unaware of any useful and specific guidelines
that concern the amount of evidence that must be accumulated before conclusions can confidently be drawn
from a set of related experiments, in spite of the existence of specific threats. More discussion within the
empirical software engineering community as to what constitutes a sufficient body of credible knowledge
would be of benefit.

Building up a body of knowledge from families of experiments has the following benefits for the software
engl neering researcher:
It allows the results of several experimentsto be combined in order to build up our knowledge about
software processes.
It increases the effectiveness of individual experiments, which can now contribute to answering more
general and abstract hypotheses.
It offers a framework for building relevant practical software engineering knowledge, organized
around the GQM goal template or another framework from the literature.
It provides away to develop and integrate laboratory manuals, which can facilitate and encourage the
types of replications that are necessary to expand our knowledge of basic principles.
It helps generate a community of experimenters, who understand the value of, and can carry out, the
needed replications.

The ahility to carry out families of replications has the following benefits for the software engineering
practltl oner:
It offers some relevant practical SE knowledge; fully parameterizing process, product, and context
models allows a better understanding of the environment in which the experimental results hold.
It provides a better basis for making judgements about selecting process, since practitioners can match
their development context to the ones under which the processes are eval uated.
It shows the importance of and ability to tailor “best practices’, that is, it shows how software
processes can be altered by meaningful manipulation of key variables.
It provides support for defining and documenting processes, since running related experiments assists
in determining the important process variables.
It allows organizations to integrate their experiences by making explicit the ways in which experiences
differ (i.e. what the relevant process, product, and context models are) or are similar, and allowing the

11

abstraction of basic principles from thisinformation.

Acknowledgements

This work was supported by NSF grant CCR9706151, NASA grant NCC5170, and UMIACS. The authors
would like to thank Michael Fredericks and Shari Lawrence Pfleeger for their valuable comments on earlier
drafts of this paper.

References

[1] V.R.Basili, "The experimental paradigm in software engineering", Experimental Software
Engineering Issues: Critical Assessment and Future Directions, International Workshop, Dagstuhl,
Germany, 1992. Appeared in Springer-Verlag, Lecture Notesin Computer Science, Number 706,
1993.

[2] V.R.Basili, "Evolving and packaging reading technologies', Journal of Systems and Software, vol.
38, no. 1, pp.3-12, July 1997.

[3] V.Basili, G. Cadiera, F. Lanubile, and F. Shull, "Studies on reading techniques’, Proc. of the
Twenty-First Annual Software Engineering Workshop, SEL-96-002, Goddard Space Flight Center,
Greenbelt, Maryland, pp.59-65, December 1996.

[4] V.R.Badili, S Green, O. Laitenberger, F. Lanubile, F. Shull, S. Soerumgaard, M. Zelkowitz, “The
empirical investigation of perspective-based reading”; Empirical Software Engineering Journal, vol.
1, no. 2, 1996.

[5] V.R.Basli, S. Green, O. Laitenburger, F. Lanubile, F. Shull, S. Sgrumgard, and M. Zelkowitz,
"Packaging researcher experience to assist replication of experiments”, Proc. of the |ISERN meeting
1996, Sydney, Australia, 1996.

[6] V.R.Basili,and D. H. Hutchens, "An empirical study of a syntactic metric family", IEEE
Transactions on Software Engineering, vol. SE-9, pp.664-672, November 1983.

[71 V.R.Basili,and R. W. Reiter, "A controlled experiment quantitatively comparing software

development approaches’, |EEE Transactions on Software Engineering, vol. SE-7, no. 3, pp.299-
320, May 1981.

[8] V.R.Basili,and H. D. Rombach, "The TAME project: Towards improvement-oriented software
environments', IEEE Transactions on Software Engineering, vol. SE-14, no. 6, June 1988.

[91 V.R.Basili, R. W. Selby, and D. H. Hutchens, “Experimentation in software engineering”, IEEE
Transactions on Software Engineering, vol. SE-12, no. 7, pp. 733-743, July 1986.

[10] V. Basili, F. Lanubile, F. Shull, "Investigating maintenance processes in a framework-based
environment", Proc. of the Int. Conf. on Software Maintenance, Bethesda, Maryland, pp.256-264,
1998.

[11] D.T. Campbell, and J. C. Stanley, Experimental and Quasi-Experimental Designs for Research,
Boston: Houghton Mifflin Co, 1963.

[12] Composable Systems Group, "Model Problems”, http://www.cs.cmu.edu/~Compose/html/ModProb/,
1995.

[13] P. Fusaro, F. Lanubile, and G. Visaggio, "A replicated experiment to assess requirements inspections
techniques', Empirical Software Engineering Journal, vol.2, no.1, pp.39-57, 1997.

[14] |EEE. Software Engineering Standards. |EEE Computer Society Press, 1987.

[15] C. M. Judd, E. R. Smith, and L. H. Kidder, Research Methods in Social Relations, sixth edition,
Orlando: Harcourt Brace Jovanovich, Inc., 1991.

[16] O. Laitenberger, and J. M. DeBaud, "Perspective-based reading of code documents at Robert Bosch
GmbH", Journal of Information and Software Technology, 39, pp.781-791, 1997.

[17] F.Lanubile, "Empirical evaluation of software maintenance technologies*, Empirical Software
Engineering Journal, vol.2, no.2, pp.95-106, 1997.

[18] F.Lanubile, "Report on the results of the parallel project meeting reading techniques’,

12

[19]

[20]

[21]
[22]

[23]

[24]
[25]
[26]

[27]

http://seldi2.uniba.it: 1025/isern97/readwg/index.htm , October 1997.

F. Lanubile, F. Shull, V. Basili, "Experimenting with error abstraction in requirements documents”,
Proc. of the 5th Int. Symposium on Software Metrics, Bethesda, Maryland, pp.114-121, 1998.

C. M. Lott, and H. D. Rombach, "Repeatabl e software engineering experiments for comparing
defect-detection techniques*, Empirical Software Engineering Journal, vol.1, no.3, pp.241-277,
1996.

K. Popper, The Logic of Scientific Discovery, Harper Torchbooks, New York, NY, 1968.

A. Porter, L. Votta, V. Basili, “ Comparing detection methods for software requirements inspections:
areplicated experiment”, |EEE Transactions on Software Engineering, vol. 21, no. 6, pp. 563-575,
1995.

F. Shull, F. Lanubile, and V. R. Basili, "Investigating Reading Techniques for Framework
Learning", Technical Report CS TR-3896, UMCP Dept. of Computer Science, UMIACS TR-98-26,
UMCP Ingtitute for Advanced Computer Studies, | SERN-98-16, International Software Engineering
Research Network, May 1998.

F. Shull. Developing Techniques for Using Software Documents. A Series of Empirical Sudies.
Ph.D. thesis, University of Maryland, College Park, December 1998.

F. Shull, “Reading Techniques for Object-Oriented Frameworks',
http://www.cs.umd.edu/projects/SoftEng/ESEG/manual/sbr_package/manual .html.

F. Shull, "Lab Package for the Empirical Investigation of Perspective-Based Reading",
http://www.cs.umd.edu/projects/ SoftEng/ESEG/manual/pbr_package/manual .html.

Z.Zhang, V. Basili, and B. Shneiderman, “An Empirical Study of Perspective-based Usability
Inspection”, Human Factors and Ergonomics Society Annual Meeting, Chicago, Oct. 1998.

13

Using Experiments to
Build a Body of Knowledge

Victor R. Basili

Experimental Software Engineering Group
Institute for Advanced Computer Studies
Department of Computer Science
University of Maryland
and
Fraunhofer Center - Maryland

1998

Evolving Knowledge in a Discipline

Understanding a discipline involves learning, i.e.,

observation

reflection, and encapsulation of knowledge

model building (application domain, problem solving processes)
experimentation

model evolution over time

This is the paradigm that has been used in many fields,

e.g., physics, medicine, manufacturing.

The differences among the fields are

how models are built and analyzed
how experimentation gets done

Evolving Knowledge
In Software Engineering

Software engineering is a laboratory science

We need to understand the nature of the processes, products and the
relationship between the two in the context of the system

All software is not the same
— there are a large number of variables that cause differences
— their effects need to be understood and studied

Currently,
— insufficient set of models to reason about the discipline
— lack of recognition of the limits of technologies for the context
— there is insufficient analysis and experimentation

This talk is about experimentation in the software discipline

EXAMPLES

Where Experiments/Knowledge Building fits in the
Quality Improvement Paradigm

PACKAGE

Integrate the improvement into your business

» Update standards
* Refine training

* Tailor process based upon experiments

lterate /

ASSESS

Select or define, and evaluate an improvement locally
Goals » Will particular reading techniques improve quality?
* Will OOT lead to higher reuse?

UNDERSTAND » Will a different testing technique reduce costs?

Gather, sift, and analyze data to build baselines

* Identify software characteristics
» Characterize process used
» Motivate goals

TIME -

Evolving Bodies of Knowledge
from Experiments

Many categories: from controlled experiments to case studies

Performed for many purposes: to study process effects, product
characteristics, environmental constraints (cost or schedule).

Typically they are looking for a relationship between two
variables, such as the relationship between process
characteristics and product characteristics

Problems with experiments (controlled)
— the large number of variables that cause differences

— deal with low level issues, microcosm of reality, small set of
variables

=> Combining experiments is necessary to build a body of
knowledge that is useful to the discipline

Criteria for building comprehensive bodies of
knowledge in Software Engineering

Sets of high level hypotheses
— address interest of the software engineering community
— Identify sets of dependent and independent variables
— provide options for the selecting detailed hypotheses
Sets of detailed hypotheses
— written in a context that allow for a well defined experiment
— combinable to support high level hypotheses
Context variables that can be changed to allow for
— experimental design variation (make up for validity threats)
— specifics of the process context;
Sufficient documentation for replication and combination
Community of researchers willing to collaborate and replicate.

Choosing a High Level Focus

* General Interest to the community
— Analyzing the Effects of a SE Process on a Product

 What are the high level questions of interest?

— Can we effectively design and study techniques that are procedurally
defined, document and notation specific, goal driven, and empirically
validated for use?

— Can we demonstrate that a procedural approach to a software
engineering task could be more effective than a less procedural one
under certain conditions?

 What are the high level hypotheses?

— A reading technique that is procedurally defined, document and
notation specific, and goal driven for use is more effective than one
that does not have these characteristics

— A procedural approach to reading based upon specific goals will find
different defects than one based upon different goals

Example: Understanding for Use
Motivation for Reading

Why pick reading?
Reading is a key technical activity for analyzing and constructing
software documents and products

Reading is a model for writing
Reading is critical for reviews, maintenance, reuse, ...

What is a reading technique?

a concrete set of instructions given to the reader saying how to read
and what to look for in a software product

More Specifically, software reading is
the individual analysis of a software artifact
e.g., requirements, design, code, test plans

to achieve the understanding needed for a particular task
e.g., defect detection, reuse, maintenance

Choosing a High Level Focus

How do we build a framework for combining hypotheses from
individual experiments, isolating out individual variables?

Consider using the Goal/Question/Metrics Paradigm

Goal Template:

— Analyze an object of study in order to purpose with respect to
focus from the point of view of who in the context of environment

Consider decomposing each of the variables to identify and
classify the independent, dependent, and context variables

Choosing a High Level Focus

Analyzing the Effects of SE Processes on Products

— Analyze processes to evaluate their effectiveness on a product from
the point of view of the knowledge builder in the context of (variable
set)

Characterize the object of study:
— Object of Study (Process, Product, ...)
— Process Class (Life Cycle Model, Method, Technique, Tool, ...)
— Technique Class (Reading, Testing, Designing, ...)

Analyze reading technigues to evaluate their effectiveness on a
product from the point of view of the knowledge builder in the
context of variable set

Choosing a High Level Focus

Analyze reading techniques to evaluate their effectiveness on
products from the point of view of the knowledge builder in the
context of variable set (G1)

Characterize the focus: Effectiveness on a Product
— Effectiveness Class (Construction, Analysis, ...)
— Effectiveness Goal (Defect Detection, Usability, ...
— Product Type (Requirements, Design, Test Plan, User Interface, ...
— Product Notation (English, SCR, Mathematics, Screen Shot, ...

Example Goal: Analyze reading technigues to evaluate their
ability to detect defects in a Requirements Document from
the point of view of the knowledge builder in the context of
variable set (G2)

Refining a High Level Focus

Object of Study Focus
Process I7ect on Pro<ct
Technique Analysis Requirements
Reading Defect English

Detection

Families of Reading Techniques

Reading Process:Technique
PROBLEM :
SPACE Construction Analysis Effect: Class
Reuse Maintenance Defect Detection Usablllty ~.. Effect: Goal
Test Plan Code Design Requwements Design Userlnterface Product:Type
G2

Product:Notation

Project Code White Box Black Box .. SCR English Screen Shot
Source Library Framework Framework
Code

Families of Reading Techniques

Reading Process:Technique
G1 Analyze reading techniqu evaluate their effectiveness on products from the
point of view of the knowledgeg builder in the context of variable set
PROBLEM
SPACE

Construction Analysis Effect: Class

Reuse Maintenance Defect Detection Usability ~.. Effect: Goal

Test Plan Code Design Requihign Us%rface Product:Type
/N GZN /
Product:Notation

Project Code White Box Black Box ... SCR English Screen Shot
Source Library Framework Framework
Code

Scenario-Based Reading Definition

» Given this set of characteristics/dimensions, an approach to
generating a family of reading techniques, called operational
scenarios, has been defined

 Goals: To define a set of reading technologies that can be
— document and notation specific
— tailorable to the project and environment
— procedurally defined
— goal driven
— focused to provide a particular coverage of the document
— empirically verified to be effective for its use
— usable in existing methods, such as inspections

 These goals defines a set of guidelines/characteristics for a
process definition for reading techniques that can be studied
experimentally

Choosing a Specific Focus from the
Experimental Framework

Characterize the process:
— Technique Class (Reading, Testing, Designing, ...)

— Technique Characteristics (goal oriented, procedurally based,
coverage focussed, documentation and notation specific, ...)

Analyze a set of goal-oriented. procedurally-based. coverage

focussed, document and notation specific reading techniques to
evaluate their effectiveness on a product from the point of view of the

knowledge builder in the context of (variable set)

Analyze a set of scenario based reading technigues to evaluate
their effectiveness on products from the point of view of the
knowledge builder in the context of (variable set)

Attempts to satisfy the high level hypotheses and provide a
frameworks for individual experiments

Choosing a Specific Focus from the
Experimental Framework

 Analyze a set of scenario based reading technigues to evaluate
their effectiveness on products from the point of view of the
knowledge builder in the context of (variable set)

 We have developed four families of reading techniques
— parameterized for use in different contexts and
— evaluated experimentally in those contexts

Scope Based Defect Based Perspective Based Usability Based

ASEINNIAN

System Task Inconsistency Incorrect Omission Tester User Developer Expert Novice Error
Wide Oriented Fact Ambiguity

Choosing a Specific Focus from the
Experimental Framework

Analyze a set of scenario based reading techniques to
evaluate their ability to detect defects in a Requirements
Document from the point of view of the knowledge builder in the
context of_(variable set)

Example: Perspective -Based Readinq:

— Choose perspectives; designer, tester, user

— Define procedural processes for each perspective
— Choose experimental treatment

— Choose defect classes

— etc.

Contexts (context variables) can be continually expanded, e.g.,
NASA/SEL subjects, Professional Software Engineering student,
Bosch project personnel

Families of Reading Techniques
Reading Process:Technique “&=
Construction Analysis Effect: Class
PROBLEM
SPACE

... Reuse Maintenance Defect Detection Traceability Usability Effect: Goal

S

Test Plan Code Design Requirements Design User Interface Product:Type
\\ Product:Notation
Project Code White Box Black Box SCR English ~ Screen Shot

Source Library Framework Framework
Code

Scope Based Defect Base Perspective Based Usability Based Family

SOLUTION P
SPACE
Expert Novice Error

System Task Inconsistent Incorrect Omission Tester User Developer Technique
Wide Oriented Ambiguity

Sample Set of Experiments

We have run several experiments
— on all four families of reading techniques
— parameterized for use in different contexts
— some involved us as directly as experimenters, others did not

Example Contexts: (Government, University, Industry)
— NASA/GSFC (PBR)
— UM Professional SE Course (PBR, UBR)
— UM Students (DBR, UBR, SBR)
— Bureau of Census (UBR)
— Robert Bosch (PBR)
— Lucent (DBR)

Example Countries: (U.S., Germany, Italy, Sweden, Scotland, Norway,...)

Choosing a Specific Focus from the
Experimental Framework

* There are still many questions that need to be covered:
— Process variable (Independent variable) issues:
 How do we define/specify the process?
 How do we account for process conformance?
— Effectiveness of Product (Dependent variable) issues:
 How do we select good criteria for effectiveness?
— Context Variables Issues:
* What subjects are performing the process?

* Questions associated with the variables need to be further
specified and documented for replication

« Varying the values of these variables allow us to
— vary the detailed hypotheses
— support validity of study results

Designing Detailed Experiments to
Increase Knowledge

We can build up knowledge by replicating detailed experiments,
keeping the same hypothesis, combining results

Varying Context Variables
— Subject experience
— context (classroom, toy, off-line, in project)
— variability among subjects
— Vary order of events and activities

Allows us to balance threats to validity
— interaction of experience and treatment
— Spontaneous migration of subjects across treatments
— replicating to counterbalance

Focused Families of Analysis Technigques

G3 Analyze a set of processes focused to provide a particular coverage of an s
artifact to evaluate their ability to detect anomalies from the point of view of the
knowledge builder in the context of_(variable set)

Process(Analysis/Reading Object of Study
PROBLEM
SPACE
Anomaly Detection Focus
Requirements User Interface Artifact

\\ _ Screen Shot Notation
SCR English \

Defect Based Perspective Based Usability Based Family

SOLUTION
SPACE
Expert Novice Error

Inconsistent Incorrect Omission Tester User Developer Technique
Ambiguity

Conclusions from Experiments

* Able to combine the results of several experiments and build up
our knowledge about software processes

— We can effectively design and study techniques that are procedurally
defined, document and notation specific, goal driven, and empirically
validated for use

— We can demonstrate that a procedural approach to a software
engineering task could be more effective than a less procedural one
under certain conditions (e.g., depends on experience)

— A procedural approach to reading based upon specific goals will find
defects related to those goals, so reading can tailored to the
environment

— et. al.

Conclusions about Knowledge Building
Experimental Framework

» Benefit to Researchers:
— ability to increase the effectiveness of individual experiments
— offers a framework for building relevant practical SE knowledge
— provides a way to develop and integrate laboratory manuals
— generate a community of experimenters

* Benefits to Practitioners:
— offers some relevant practical SE knowledge
— provides a better basis for making judgements about selecting process
— shows importance of and ability to tailor “best practices”
— provides support for defining and documenting processes
— allows organizations to integrate their experiences with processes

Contributors to This Work

» Directly to the Ideas Presented here:
— Forrest Shull, Filippo Lanubile

» As Experimenters Locally:

— Reported Experiments: Scott Green, Oliver Laitenberﬁer, Filippo
Lﬁnublle, Forrest Shull, Sivert Sorumgaard, Marvin Zelkowitz, Zhijun
Zhang

— New Studies Underway: Fred Fredericks, Shari Lawrence Pfleeger,
Rae Kwon, Guilherme Travassos

» As Experimenters in Other Locations
— ISERN members
— Others

Session 2: Experimentation

Culture Conflicts in Software Engineering Technology Transfer
D. Wallace, National Institute Of Standards and Technology,
and M. Zelkowitz, University Of Maryland

An Adaptation of Experimental Design to Empirical Validation of Software
Engineering Theories
N. Juristo and A. Moreno, Universidad Politecnica de Madrid

Disciplined Software Engineering: Extending Enterprise Engineering
Architectures to Support the OO Paradigm
F. Maymir-Ducharme, Lockheed Martin

Culture Conflictsin Softwar e Engineering Technology Transfer

Marvin V. Zelkowitz DoloresR. Wallace David W. Binkley
Department of Computer Science and Information Technology L aboratory Computer Science Department
Inst. for Advanced Computer Studies Natl. Inst. of Standards and Technology Loyola College
University of Maryland Gaithersburg, Maryland 20899 Baltimore, Maryland
College Park, Maryland 20742 and Information Technology L ab.
and Fraunhofer Center - Maryland Natl. Inst. of Standards and Technology
College Park, Maryland 20742 Gaithersburg, MD 20899
Abstract

Although the need to transition new technology to improve the process of developing
quality software products is well understood, the computer software industry has done a
poor job of carrying out that need. All too often new software technology is touted as the
next "silver bullet" to be adopted, only to fail and disappear within a very short period.
New technologies are often adopted without any convincing evidence that they will be
effective, yet other technologies are ignored despite the published data that they will be
useful. Clearly there is a clash between those developing new technologies and those
responsible for developing quality products. In this paper we discuss a study conducted
among a large group of computer software professionals in order to understand what
techniques can be used to support the introduction of new technologies, and to understand
the biases and opinions of those charged with researching, developing or implementing
those new technologies. This study indicates which evaluation techniques are viewed as
most successful under various conditions. We show that the research and industrial
communities do indeed have different perspectives, which leads to a clash between the
goals of the technology researchers and the needs of the technology users.

Keywords: Experimentation, Survey, Technology transfer, Validation models

1. Introduction

When the computer industry began several decades ago, software engineering was somewhat unique
among engineering fieldsin that researchers and practitioners worked closely together in using and
understanding this new technology. There was easy cross-fertilization between these two communities.
Over time, this has changed with tremendous growth of computer applications, computer users, and
computing professionals. Programming languages have evolved from-low level assembler languagesto
today’ s very high level visual object-oriented languages. Simple programs have become complex large
systems, with some systems running an entire enterprise. Methods for devel oping programs have grown
from design-writing on napkins to amyriad of overlapping processes comprising varieties of methods and
documentation types.

A response to this growth has been a corresponding growth in organizations dedicated to supplying an
ever-increasing need for better tools and techniques for producing these complex products. Trade shows,
research conferences, trade magazines proliferate on the technology scene. New professional technical

" Research supported in part by National Science Foundation grant CCR-9706151 to the University of Maryland.

SEW Proceeedings-98

journals regularly come alive to add to an already large number; the |EEE a one through its Computer
Society currently publishes 20 monthly or bimonthly computer technology publications.

In spite of an abundance of methods and tools and information about them, why do the same problems
appear over and over again in new software devel opments? Why are devel opment schedul es not met?
Why do some systems fail? Why do some technical problems remain unsolved? While new solutions are
frequently proposed, many have not been transferred into the industry at large. Many problems remain
untouched by researchers. Why does it appear that today researchers and practitioners are no longer
necessarily understanding each other’ s needs and efforts?

Researchers have been looking at the role of experimentation in computer science research [Fenton94].
However, most of these have looked at the relatively narrow scope of how to conduct replicated scientific
experiments within this domain. We have been looking at the larger problems of the role of
experimentation as an agent in transferring new technology into industry. We have been studying various
experimental methods, in addition to the replicated experiment, useful for validating newly devel oped
software technology [Zelkowitz97] [Zelkowitz98], and we have also studied various evaluation methods
industry uses before adopting a new technology. Aswe later explain, these two processes are very
different. The questions important to us include "Which of these validation and evaluation methods are
most effective?’ “Why aren't these methods used more often?’ and “Why don't these results provide
evidence for the transference of atechnology into industry?’ To try to understand these questions, we
decided to survey a cross section of computer professionals about their views about software engineering
technology validation.

1.1 The research and industrial communities

Researchers, whether in academia or industry, have adesire to develop new concepts and are rewarded
when they produce new designs, algorithms, theorems, and models. The "work product” in this caseis
often a published paper demonstrating the value of their new technology. Development professionals,
however, have adesire and are paid to produce a product using whatever technology seems appropriate
for the problem at hand. The end result is a product that produces revenue for their employer.

Researchers select their research according to atopic of their own interest; the topic may or may not be
directly related to a specific problem faced by industry. After achieving aresult that they consider
interesting, they have a great desire to get that result in print. Providing a good scientific validation of the
technology is often not necessary for publication, and several studies have shown that experimental
validation of computer technology is particularly weak, e.g., [Tichy95] [Zelkowitz98].

In industry, producing a product is most important and the "elegance” of the process used to produce that
product is less important than achieving a quality product on time as aresult. Being "state of the art" in
industry often means doing things as well (or as poorly) as the competition, so there is considerable risk
aversion to try a new technology unless the competition isaso using it.

Consequently, researchers produce papers outlining the values of new technology, yet industry often
ignores that advice. Assorted "silver bullets" are proposed as solutions to the "software crisis' without any
good justification that they may be effective, are used for atime by large segments of the community, and
then are discarded when they indeed turn out not to be the solution. Clearly the research community is not
generating results that are in tune with what industry needs to hear, and industry is making decisions
without the benefit of good scientific developments. The two communities are severely out of touch with

SEW Proceeedings-98

one another. The purpose of our survey isto try and understand these communities and understand their
differences.

1.2 Research models

We began our effort to understand the differences between the research and industrial communities by
examining models of experimentation for computer technology research. We identified 12 methods of
experimentation that have been used in the computer field [Table 1.1] and verified their usage by studying
612 papers appearing in three professional publications at 5-year intervals [Zelkowitz98] from 1985
through 1995. About 20% of the papers contained no validation at all and another third contained only a
weak ineffective form of validation. The figure for other scientific fields was more like 10% - 15%
[Zelkowitz97]. The methods are defined in Appendix 1.

Table 1.1 Experimental Validation Models
Case study Project monitoring
Dynamic analysis Replicated
Field study Simulation
Legacy data Static analysis
L essons learned Synthetic
Literature search Theoretical analysis

Our results were consistent with those found by Tichy in his 1995 study of 400 research papers
[Tichy95]. He found that over 50% of the design papers did not have any validation in them. In amore
recent paper [Tichy98], Tichy makes a strong argument that more experimentation is needed and refutes
several myths deprecating the value of experimentation.

1.3 Transition models

Given the set of research validation methods, we then sought to determine the techniques actually used by
industry in order to transition a new technology. We visited several large development corporations' and
interviewed reasonably high level individuals, such as Chief Scientist, Chief Technology Officer, and
managers of large divisions. All had ultimate responsibility for technology selection. They were
primarily influenced by trade shows, weekly trade magazines, Web information, customer opinion (i.e.,
technologies that would win the contract), vendor opinion, friends in other companies, and infrequently
by the papersin professional technical journals. Sometimes recommendations from technical staff would
be based on their readings and would eventually reach the managers' offices. Once atechnology was
identified, the companies might perform a pilot study or were mentored by an expert of the technology to
determineif the technology would be effective.

Based on these industrial interviews and some earlier work by Brown and Wallnau [Brown96], we
defined a set of industrial transition models for technology evaluation. While the transition models
include some that are similar to those of the researchers, many are different [Table 1.2]; Appendix 2
provides a short description of these models. For example, vendor opinion (e.g., trade shows, weekly
trade magazines, web information) seemed important to industry; Web information also provides access
to research literature so we needed to separate the medium in which information is located from the type
of model that information supports. An important finding, though, is that everyone with whom we spoke
claimed to use the web to find technology information.

! To assure frank discussion, we agreed not to reveal the names of the corporations who spoke with us,

SEW Proceeedings-98

Table 1.2 Industrial Transition Models
Case study Research literature
Datamining Shadow (replicated) project
Demonstrator projects State of the art
Feature benchmark Survey
Field study Theoretical analysis
M easurement Vendor opinion
Pilot study

Our interviews revealed that a company may use people-oriented methods for technology transfer. For example, a
company may hire awell-recognized expert in that technology, perhapsits creator, to help integrate the method into
company practices. They may specifically recruit people who have that skill on their resumes. Anocther practice
appears to be training by hiring an expert to teach in-house training or by sending their personnel to universities or
training companies.

In retrospect we would have entered these modelsin our survey, especially because the survey results discussed in
Section 4 indicate that in two instances, two models could have been combined. Field study and survey both
estimate the probable effects of some new technology. In thefield study, several development groups may be
observed over a short time period while in the survey several experts may discuss their opinions based on their
expertise in the technology. They are rather closely aligned in time and people requirements and were perceived
approximately the same. A pilot study involves a sample project, usually small, to study a new technique while
demonstrator studies are less complete multiple instances of a pilot study.

1.4 Understanding each community

Researchers principally use methods from Table 1.1 in order to demonstrate the value of their
technologica improvements and industry selects new technology to employ by using the methodsin
Table 1.2. How do these communities interact? How can their methods support forward growth in
computer technology and its application in real systems? We need to develop a better understanding of
what each community understands and values. Then, perhaps, we can identify commonalities and gaps,
and from there, mechanisms to enable each community to benefit better from the other.

2. Development of the survey

To understand the different perceptions between those who devel op technology and those who use
technology, we decided to survey the software development community to learn how they view the
effectiveness of the various evaluation models of Tables 1.1 and 1.2. For questions, we based our survey
on aprevious survey [Daly97], modified for our current purposes. Each survey participant wasto rank the
difficulty of each of our 12 experimental models (or 13 evaluation models) according to 7 criteria, criteria
1 and 2 being new and 3 through 7 being the same as the Daly criteria. We decided to try to obtain an
objective score by having all values ranked between 1 and 20, with 10 being arbitrarily defined as the
maximum difficulty that a given company would apply in practice, and 20 being defined as an impossible
model for that criterion.

2.1 Survey questions
The 7 questions we chose were:

1. How easyisit to use this method in practice? -- Can we use this method to evaluate a new
technology? The answer should be independent of whether the method gives accurate results or not.

SEW Proceeedings-98

2. What isthe cost of adding one extra subject to the study? -- Assume you want to add an
additional subject (another data point) to your sample. What is the relative cost of doing so?

3. What istheinternal validity of the method? -- What is the extent to which one can draw correct
causal conclusions from the study? That is, to what extent can the observed results be shown to be
caused by the manipulated dependent experimental variables and not by some other unobserved
factor?

4. What isthe external validity of the method? -- What is the extent to which the results of the
research can be generalized to the population under study and to other settings (e.g.,
professional programmers, organizations, real projects)?

5. What isthe ease of replication? -- What is the ease with which the same experimental conditions
can bereplicated (internally or externally) in subsequent studies? It is assumed that the variables that
can be controlled (i.e., the dependent variables) are to be given the same value.

6. What isthe potential for theory generation? -- What is the potential of the study to lead to
unanticipated a priori and new causal theories explaining a phenomenon? For example, exploratory
studies tend to have a high potential for theory generation.

7. What isthe potential for theory confirmation? -- What is the potential of the study to test an a
priori well-defined theory and provide strong evidence to support it?

In an eighth question we asked each participant to rank the relative importance (again using the 1-20
ranking) of each of the 7 questions when making a decision on using a new technology. That is, which of
the 7 questions was most important when a new technology was being evaluated?

We devel oped two different survey instruments from these 8 questions -- one by ranking each of the 12
research validation methods of Table 1.1 (i.e., the research survey) and one by ranking each of the 13
evaluation methods of Table 1.2 (i.e,, the industrial survey).

2.2Population samples

For our 2 survey instruments we obtained three popul ations to sample. Sample 1 included U.S.-based
authors with email addresses published in several recent software engineering conference proceedings’.
These were mostly research professionals, although included a few devel opers. Approximately 150
invitations to participate were sent to these individuals, and 45 accepted. The survey was not sent until
the participant agreed to fill out the form, which we estimated would take about an hour to 90 minutesto
read and fill out. About half of the individuals returned the completed form.

Sample 2 included U.S.-based authors with email addresses from severa recent industry-oriented
conferences. They were sent the industrial survey. About 150 invitations to participate were sent and
about 50 responded favorably to our invitation. They were then sent the survey. Again, about half
completed and returned the form.

2 The survey was conducted via email.

SEW Proceeedings-98

Sample 3 were students in a graduate software engineering course at the University of Maryland taught by
one of the authors of this paper. This sample was given the research survey. This course was part of a
masters degree program in software engineering, and almost all of the students were working
professionals with experience ranging up to 24 years. Not surprisingly, the return rate of the form for this
sample was high at 96% (44 of 46).

It isimportant to realize that we wanted the subjective opinion of those surveyed on the value of the
respective validation techniques based upon several criteria. Not everyone returning the survey had
previoudly used al, or even any, of the listed methods. We simply wanted their views on how important
they thought the methods were. However, by choosing our sample populations from those writing papers
for conferences or taking courses for career advancement, we believe we have chosen sample populations
that are more knowledgeable, in general, about validation methods than the average software
development professional. The invitations were sent early in 1998, and data was collected February
through early April, 1998. Table 2.1 summarizes the 3 sample populations.

Table 2.1 Characteristics of each survey sample
Sample Survey Sample | Years | Academic | Industrial | Industrial | Other (e.g.,
size exper. | Position R&D developer | Consultants)
1 (Research) | Research 18 18.6 9 3 3 3
2 (Industry) | Industry 25 19.1 0 5 8 12
3 (Students) | Research 44 6.6 1 5 27 11

3 Survey results

Our initial concern wasto determine bias in the set of responses. Would certain individuals rank all
techniques high or low compared to other individuals? In order to test for this, we computed the average
raw scores for each technique for each question, and we also ranked each answer (i.e., computing the
easiest technique for each question, second easiest, third easiest, ..., 12" easiest). Thiswould eliminate
such bias, but would also eliminate the significance of the value 10 being the subjective value of "hard to
do.” Fortunately, we believe that we don’t have to take this into account. Figure 1 shows the value for the
guestion "Easy to do." The first column represents the average raw scores for the 12 methods of Table 1.1
from the research sample (sample 1) and the second column is the average ranked score. Low values
indicate the more important techniques. The fact that the ordering of the techniques from best to worst
was essentially the same indicates that the raw score is an accurate reflection of the ranking. Only the 3"
and 4™, 5™ and 6™, and 9" and 10™ techniques switched places, not amajor change. Columns 3 and 4
represent similar data from the student sample (sample 3). Here only the third and fourth and eighth and
ninth technigques switched places. However, there are some slight differences between sample 1 and
sample 3, which will be discussed in Section 4.

Similar charts were obtained from the other questions. In addition, the correlation between the raw scores
and the ranked scores for sample 1 was 0.86, 0 .96 for sample 2 and 0.93 for sample 3. On this basis, we
decided we could use the raw data and did not need to use only the ranked data for comparisons.

The average value for each technique for each of the 7 criteria appearsin Figures 2 through 4. Figure 2
represents the average score for each of the 12 experimental methods over all 7 criteriafor sample 1 with
alpha=.05 confidence interval bars surrounding each average value. The*7” in each criterion represents
the midpoint among the methods in order to make it easier to read the figure. Of greatest interest are bars
that do not overlap, meaning there is a 95% probability that the average values for those techniques

SEW Proceeedings-98

14
Sample 3
—Raw
score

Sample 3—
Ranked score

4 < -
1-Raw Sample1 - \

score Ranked score
N o

Figure 1. Easy to do. Average value for each of 12 validation methods.

indicate asignificant difference. Figure 3 represents a similar graph for sample 2 (the industrial group
ranking 13 techniques) and Figure 4 represents a similar graph for sample 3 (the student industrial
sample).

SEW Proceeedings-98

1-case study 2-dynamic analysis 3-field study 4-lessons learned 5-legacy data 6-project monitoring 7-literature search
8-replicated experiment 9-simulation 10-static analysis 11-synthetic study 12-theoretical analysis

° Easy to do? Additional $ Internal valid |External valid Fase of repl Theory gen THeory conf
16

14

12 i n|

10 [: - -

Figure 2. Sample 1 (research group) results.

SEW Proceeedings-98

1-case study 2-data mining 3-demonstrator projects 4-feature benchmark 5-field study 6-measurement 7-pilot study 8-research literature 9-
shadow(replicated) project 10-state of the art 11-survey 12-theoretical analysis 13-vendor opinion

18

Easy to do| Additional $ Internal valid Ext validity Ease of repl Theory Gen |Theory conf.

16

14

12

10

Figure 3. Sample 2 (industry group) results.

SEW Proceeedings-98

1-case study 2-dynamic analysis 3-field study 4-lessons learned 5-legacy data 6-project monitoring 7-literature search 8-

replicated experiment 9-simulation 10-static analysis 11-synthetic study 12-theoretical analysis

14

12

Easy to do

Additional $

Internal valid

Ext validity

Ease of repl

Theory gen

Theory confirm

10

Figure 4. Sample 3 (student industrial group) results.

One way to simplify the data from these figuresisto split the methods for each criterion into three
partitions: practical, neutral, and impractical. The following procedure was applied:

1. Each method whose upper confidence interval was below the average value for all techniques
would be listed in the practical partition. These methods are all "better than average”
according to our 95% confidence criterion.
Each method whose lower confidence interval was above the average value for all methods
would be listed in the impractical partition. These methods are all "worse than average"

according to our 95% confidence criterion.
3. All other methods would be listed in the neutral partition.

Tables 3.1 through 3.3 summarize this process giving the practical and impractical techniques. All other
methods are in the neutral partition.

Table 3.1 Practical and impractical techniques from resear ch sample

Easy Addit. $ Int. val. Ext.val. | Easeof repl. | Theory gen. | Theory conf.
Practical Dyn. anal Legacy data | Dyn. andl. Dyn. anal. Replicated
Les. learned | Proj. mon. Replication Simulation
Legacy data | Static anal. Static anal.
Static anal.
Impractical | Replicated Replicated Case study Case study Legacy data
Synthetic Field study
Les. learned

SEW Proceeedings-98

Table 3.2 Practical and impractical techniques from industry sample
Easy Addit. $ Int. val. Ext. val. Easerepl. | Theory gen. | Theory conf.
Practical Case study Res. Lit Measure Field study Measure Datamining | Field study
Pilot study Survey Measure Res. Lit. Measure Measure
Survey Vendor opin. Theory anal.
Vendor opin.
Impractical | Replicated Replicated State of art State of art Vendor opin. | State of art
Vendor opin | Vendor opin Vendor opin
Table 3.3 Practical and impractical techniques from student industrial sample
Easy Addit. $ Int. val. Ext. val. Easerepl. | Theory gen. | Theory conf.
Practical Case study Case study Case study Case study Case study | Case study Field study
Legacy data | Legacy data | Dyn. Anal. Legacy data Field study
Proj. mon. Proj. mon. Simulation Theory anal.
Lit. search
Impractical | Replicated Replication Proj. mon. Synthetic Proj. mon. Proj. mon.
Synthetic Synthetic Theory anal. | Theory anal.
Theory anal. | Theory anal.

Our final 8" question was to rate the importance of each of the 7 questions when making a decision on
using a new technology. The purpose was to determine which of the criteria was most important when
making such a decision. Figure 5 summarizes those answers on a single chart, the column labeled 1
representing the average values for the first sample, column 2 representing the average value for sample 2
and column 3 being sample 3.

4 Survey Evaluation

4.1Preferred research techniques

Figures 2 and 4 and Tables 3.1 and 3.3 present a summary of our findings for the research validation
methods. We summarize some of the observations from those figures.

In terms of easiness (question 1), replicated experiments and synthetic experiments for the research
sample and replicated experiments, synthetic experiments and theoretical analysis for the student
industrial sample were viewed as significantly (at the .05 level) harder to do than the other techniques and
asimpractical according to Tables 3.1 and 3.3. With average scores above 10, the consensus of these
groups was that industry would never use such techniques as part of avalidation strategy. It is no wonder
that such techniques are rarely reported in the literature. In our earlier survey [Zelkowitz98] only 3.2% of
the reported studies used synthetic or replicated experiments.

On the other hand, these two groups differed in their belief in the effectiveness of theoretical analysis with
respect to internal and external validity (questions 3 and 4). Whereas the research group considered a
theoretical validation likely to be used as much as any other technique (i.e., in the neutral partition of
Table 3.1), theindustrial group considered it most difficult to use, preferring instead the "hands on"
techniques over the more formal arguments.

SEW Proceeedings-98

Other than the cost and ease issues, none of the other criteria exhibited significant differences among the
respondents. However, when we combine the criteria into a single composite number, differences do
become apparent (See Section 4.3).

4.2 Preferred industrial methods

Figure 3 and table 3.2 give the basic results for the industrial transition methods. As with the research
population, the replicated (shadow) project had an average rating (over al 7 questions) of over 10,
signifying little industrial interest in performing such studies. Vendor opinion also averaged above 10, as
did the need to be state of the art.

These high scores were all probably due to different reasons. Replicated experiments were viewed as
hardest to do (highest score among all techniques at about 13.5), while vendor opinion had the worst
internal and external validity (the ability for the method to explain the phenomenon under study, i.e.,
trusting the vendor to give the correct explanation). On the other hand, the need to be state of the art al'so
suffered with respect to internal and external validity.

It isinteresting to note that according to table 3.2, vendor opinion was considered practical according to
ease of use (criterion 1), yet wasimpractical according to the criteriathat dealt with accuracy of the
evaluation (questions 3, 4, 6 and 7).

Theoretical analysis was harder to do than any other technique except the replicated project.

Value of Questions

12 4
10 A
8 - Oresearch
6 - Windustry
4 ~ Ostudent
2]
O |

1 2 3 4 5 6 7
l=easy to do; 2=additional $; 3=int. validity;
4=ext. validity; 5=ease of repl.; 6=theory gen.;
7=theory conf.

Figure 5. Relative importance of each criterion.

4.3 Culture differences

By comparing results across different samples, we gain an appreciation of the differing valuesin the
software engineering community. Although sample 2 evaluated the industrial methods according to our 7
criteriaand sample 3 evaluated the research methods for the same criteria, both were made up mostly of

SEW Proceeedings-98

professional developers. Question 8, the importance of each criterion, reveals strong agreement between
these two populations, and strong disagreements with the research professionals from sample 1.

Figure 5 summarizes this result. Both samples 2 and 3 viewed easy to do, internal validity (that the
validation confirmed the effectiveness of the technique) and the ease of replicating the experiment as the
most important criteriain choosing a new method. While internal validity was important, external validity
was of less crucial concern. That can be interpreted as the self-interest of industry in choosing methods
applicable to its own environment and of less concern if it also aided a competitor.

On the other hand, for the research community of sample 1, internal and external validity, the ability of
the validation to demonstrate effectiveness of the technique in the experimental sample and also to be able
to generalize to other samples, were the primary criteria. Confirming atheory was next, obviously
influenced by the research community's orientation in developing new theoretical foundations for
technology. At the other end of the scale, cost was of |less concern where ease of replication was only 5"
most important and cost of adding additional subjects was rated aslast.

This points out some of the problems we addressed at the beginning of this paper. The research
community is more concerned with theory confirmation and validity of the experiment and less concerned
about costs, whereas the industrial community is more concerned about costs and applicability in their
own environment and less concerned about general scientific results which can aid the community at
large.

4.4 Composite measures

Given the set of 7 criteria, can we generate any composite measure for evaluating the effectiveness of the
various validation methods? Since we have the respondents’ impressions of the importance of each of the
7 criteria (via Figure 5), one obvious composite measure is the weighted sum of all the criteria
evaluations. In this case, low score would determine the most significant methods. Table 4.1 gives these
results.

Table 4.1 Composite measur es
Sample 1 ordering Sample 3 ordering Sample 2 ordering
(Resear ch group) (Student group) (Industry group)

Simulation 288 | Case study 284 | Measurement 258
Static analysis 292 | Legacy data 314 | Datamining 305
Dynamic analysis 298 | Field study 315 | Theoretical analysis 324
Project monitoring 301 | Simulation 333 | Research literature 325
L essons learned 339 | Dynamic analysis 355 | Case study 326
Legacy data 345 | Static analysis 361 | Field study 327
Synthetic study 346 | Literature search 370 | Pilot study 329
Theoretical analysis 348 | Replicated experiment 387 | Feature benchmark 338
Field study 363 | Project monitoring 388 | Survey 343
Literature search 367 | Lessonslearned 391 | Demonstrator project 345
Replicated experiment | 368 | Theoretical anaysis 405 | Replicated project 361
Case study 398 | Synthetic study 418 | State of the art 407

Vendor opinion 469

Table 4.1 reveals some interesting observations:

SEW Proceeedings-98

1. For the research community, tools-based techniques dominate the rankings. Simulation, static
analysis, and dynamic analysis are techniques that are easy to automate and can be handled in the
laboratory. On the other hand, techniques that are labor intensive and require interacting with
industrial groups (e.g., replicated experiment and case study) are at the bottom of the list. From our
own anecdotal experiences over the past 20 years, working with industry on real projects certainly is
harder to manage than building evaluation toolsin the lab.

2. For theindustrial community (the student sample 3 population), amost the opposite seems true.
Those techniques that can confirm atechnique in the field using industry data (e.g., case study, legacy
data, field study) dominate the rankings, while “artificial” environments (e.g., theoretical anaysis,
synthetic study) are at the bottom. Again, this seemsto support the concept that industrial
professional's are more concerned with effectiveness of the techniquesin live situations than simply
validating a concept.

3. Theindustrial group evaluating the industrial validation methods (sample 2) cannot be compared with
the above two groups since the methods they evaluated were different; however, there are some
interesting observations. For one, measurement, the continual collection of data on development
practices, clearly dominates the ranking. Thisis a surprising considering the difficulty the
software engineering measurement community has been having in getting industry to
recognize the need to measure development practices. With models like the Software
Engineering Institute’ s Capability Maturity Model (CMM), the SEI' s Personal Software Process
(PSP) and Basili’ s Experience Factory promoting measurement, perhaps the word is finally getting
out about the need to measure. But actual practice does not seem to agree with the desires of the
professionalsin the field. In addition, theoretical analysis came out fairly high in this composite
score, but that does not seem to relate to experiencesin the field.

4. Alsowithin theindustria group, the need to be state of the art came near the bottom of the list (12"
out of 13) as not important. Basing decisions on vendor opinions was last. Y et vendors often
influence the decision making process. Vendor opinions were judged to be |east effective with respect
tointernal and external validity (Figure 3), but since vendor opinion was also judged to be one of the
easiest to do, apparently users rely on such opinions even though they know the results are not to be
trusted.

5. Datamining of collected data turned out to be second most important according to the industrial
group. Thisis compatible with measurement being most important. If datais not collected, then there
is nothing available to mine. Theoretical validation, literature search, and various experimental
developments (i.e., field study, case study, pilot study) al ranked about the same level of importance
to this group.

5. Conclusions

In this paper we discuss a survey taken from approximately 90 software engineering professionals. The
survey evaluated subjective opinions on the value of validation methods for transferring new technology
into industry. The ideawas to study those methods used by the research community to validate new
technol ogies and those methods used by industry to evaluate a new technology and to try and understand
the differences. From this survey, we can make the observation that the research community and the
development community do indeed have different perceptions of the role of experimentation to validating
new technology. Researchers are more interested in how well atheory has been validated, whereas
industry is more attuned, as expected, to how well the technique worksin their own environment. Costs,
while important to the industry sample, are mostly ignored by the research community.

Publication of research resultsis amajor focus of the research community. In this respect, journal editors
can play an important role in affecting this cultural difference. Developing new technologies and getting

SEW Proceeedings-98

them into use should be amajor focus of software engineering research. Editors of journals consider
requiring more real-world validation using models like case studies, legacy data and field studies and be
more suspect at validation via laboratory models, such as simulation and synthetic studies.

The survey aso indicates that one should not simply be state of the art ssimply to be “fashionable” or
listen to vendors for technology transfer decisions. Such decisions should depend on more technol ogical
reasons. Y et such actions are taken daily.

M easurement became the most important industrial decision making processin our composite analysis,
yet anecdotal evidence indicates that much of industry does not collect the necessary data to build
measurement programs. For the most part, our earlier survey [Zelkowitz98], the composite scores, and the
resultsin Tables 3.1 to 3.3 are compatible. In the earlier survey, papers studied from 1995 used case study
and lessons learned equally, followed by ssmulation at half that number. In Table 3.3, the student
population considering the research techniques ranked case study as practical in six of the seven
guestions. Theindustrial group (Table 3.2) selected either measurement or case study as practical for six
of the seven questions, but the researchers find case study either impractical or neutral. Case study
requires collection of data and measurement. It appears that the industry population values these
measurement techniques as important, cost is a significant driver to industry, measurement techniques are
perceived as too expensive. Better methods and tools for aiding measurement techniques are required to
address industry concerns and to make the techniques more acceptable to researchers.

Given that industry is most concerned with internal validity, better tools are needed to aid the research
community so that external validity can be conveyed more effectively to the industrial community. This
would limit the effects of the "silver bullet" solution to complex problems. Studies are needed to identify:

1. What arethe primary driversthat affect applicability in different environments?
2. How do you measure the effectiveness of a new method in a different environment?

Some of the results obtained here may be viewed as obvious, but we believe that these opinions have not
been quantified previously. The industrial and the research community do look at method validation for
different purposes, so it is not too surprising that one does not share the beliefs of the other. Thisleads to
conflicts when one group does not provide or use the results of the other.

Given the set of techniques described here, it would aid both communitiesif those techniques near the top
of the rankings had better tool support. Measurement is clearly important to the industrial professional, so
less expensive data collection methods are needed. Tools for collecting defect data or analyzing defect
and resource data are needed. Tools to better evaluate case studies would help. How to deal with the high
cost and poor perception of the replicated experiment needs to be further studied.

In this paper, aswith our earlier survey of the research literature, we have tried to understand the process
that organizations use to evaluate new technologies and transition them into industrial use. We haven't
solved the significant technology transition problems with this survey, but we do believe we have
indicated where further research is needed and why some of the current problemsin technology transition
exist. We need to further understand both culturesin order to determine which technique can best enable
industry to make intelligent choices on which new technology to use and, we emphasize the need for
research to devel op the methods and tools to make these techniques practical..

Acknowledgments

We thank Dr. Nien Zhang for his suggestions regarding statistical methods for viewing this data.

SEW Proceeedings-98

References

[Brown96] Brown A. W. and K. C. Wallnau, A framework for evaluating software technology, |EEE
Software, (September, 1996) 39-49.

[Fenton94] Fenton N., S. L. Pfleeger, and R. L. Glass, Science and substance: A challenge to software
engineers, |IEEE Software, Vol. 11, No. 4, 1994, 86-95.

[Day97] Daly, J., K. El Emam, and J. Miller, Multi-method research in software engineering, 1997
|EEE Workshop on Empirical Studies of Software Maintenance (WESS ‘97) Bari, Italy,
October 3, 1997.

[Tichy95] Tichy W. F., P. Lukowicz, L. Prechelt, and E. A. Heinz, Experimental evaluation in computer
science: A quantitative study, J. of Systems and Software Vol. 28, No. 1, 1995 9-18.

[Tichy98] Tichy, W., Should computer scientists experiment more?, Computer, Vol.31, No.5, 1998, pp.
32-40.

[Zelkowitz97] Zelkowitz M. and D. Wallace, Experimental validation in software engineering,
Information and Software Technology, Vol. 39, 1997, 735-743.

[Zelkowitz98] Zelkowitz M. and D. Wallace, Experimental models for validating technology, Computer,
Vol.31, No.5, 1998, 23-31.

SEW Proceeedings-98

APPENDIX 1 -- Types of Research Validation

1

10.

11.

Case study - aproject is monitored and data collected over time. Data collection is derived from a
specific goal for the project. A certain attribute is monitored (e.g., reliability, cost) and datais
collected to measure that attribute.

Dynamic analysis - aproduct is executed for performance. Many methods instrument the given
product by adding debugging or testing code in such away that features of the product can be
demonstrated and evaluated when the product is executed.

Legacy data - datafrom previous projectsis examined for understanding in order to apply that
information on a new project under development. Available data includes al artifactsinvolved in the
product, e.g., the source program, specification, design, and testing documentation, as well as data
collected in its development.

L essons-lear ned - qualitative data from completed projects is examined. Lessons-learned documents
are often produced after alarge industrial project is completed. A study of these documents often
reveals qualitative aspects which can be used to improve future devel opments.

Literature search - previously published studies are examined. It requires the investigator to analyze
the results of papers and other documents that are publicly available (e.g., conference and journal
articles).

Project monitoring - collect and store development data during project development. The available
datawill be whatever the project generates with no attempt to influence or redirect the devel opment
process or methods that are being used.

Field study - A field study may examine data collected from several projects (e.g., subjects)
simultaneoudly. Typically, data are collected from each activity in order to determine the
effectiveness of that activity. Often an outside group will monitor the actions of each subject group,
whereas in the case study model, the subjects themselves perform the data collection activities.

Replicated experiment - develop multiple versions of product. In areplicated experiment several
projects are staffed to perform atask in multiple ways. Control variables are set (e.g., duration, staff
level, methods used) and statistical validity can be more applied. Thisisthe "classical" scientific
experiment where similar process is altered repeatedly to see the effects of that change.

Simulation - execute product with artificial data. Related to dynamic analysis is the concept of
simulation. We can evaluate a technology by executing the product using a model of the real
environment. We hypothesize, or predict, how the real environment will react to the new technology.

Static analysis - examine structure of developed product. Thisis a special case of studying legacy
data except that we centralize our concerns on the product that was devel oped, whereas legacy data
also included devel opment process measurement.

Synthetic environment - replicate one factor in laboratory setting. In software development, projects
are usually large and the staffing of multiple projects (e.g., the replicated experiment) in arealistic
setting is usually prohibitively expensive. For this reason, most software engineering replications are
performed in asmaller artificial setting, which only approximates the environment of the larger
projects.

SEW Proceeedings-98

12. Theoretical analysis - useslogic to validate a theory; validation consists of logical proofs derived
from a specific set of axioms.

APPENDIX 2 -- Types of Industrial Evaluation

1. Case study -- Sample projects, typica of other industrial developments for that organization, are
developed, where some new technology is applied and the results of using that technology are
observed.

2. Data mining -- Completed projects are studied in order to find new information about the
technologies to devel op those projects.

3. Demonstrator projects-- Multiple instances of an application, with essential features deleted, are
built in order to observe behavior of the new system.

4. Featurebenchmark -- Alternative technologies are evaluated and comparable data are collected.
Thisisusually a"desk study" using documentation on those features.

5. Field study -- An assessment is made by observing the behavior of several other development groups

over arelatively short time.

6. Measurement -- Datais continually collected on development practices. This data can be
investigated when a new technology is proposed.

7. Pilot study - A sample project that uses a new technology. Thisis generally a smaller application
(than a case study) before scaling up to full deployment, but is more compl ete than a demonstration
project.

8. Research literature -- Information is obtained from professional conferences, journals, and other
academic sources of information.

9. Shadow (Replicated) project -- One or more projects duplicate another project in order to test
different alternative technologies on the same application.

10. State of the art -- Using a new technology that is based upon purchaser or client desires or
government rules to only use the latest or best technology.

11. Survey -- Expertsin other areas (e.g., other companies, academia, other projects) are queried for their
expert opinion of the probable effects of some new technology.

12. Theoretical analysis -- Basing an opinion on the validity of the mathematical model of a new
technology.

13. Vendor opinion -- Vendors (e.g, through trade shows, trade press, advertising, sales meetings)
promote a new technology.

SEW Proceeedings-98

Experimental Models of
Technology Transfer

Dolores R. Wallace
Information Technology Laboratory
National Institute of Standards and Technology
&
MarvinV. Zelkowitz
University of Maryland and
Fraunhofer Center - Maryland

ST GSFC SEWO8

N'Sl- Fraunhofer USA Fraunhofer Center

Maryland s 1

Acknowledgements

e Thisactivity also aided by:

— David Binkley, Loyola College, Baltimore,

Maryland
Suailr, GSFC SEW98
NIST Fraunhofer USA &0 @
Maryland “"Tfﬁ.i <3 2

Goal of activity

e To understand how experimental validation
of new technology playsarolein
technology transfer

— Models of experimental validation - 1996

— Perceptions among research and practitioner
communities - 1998

_ ?ﬁ‘-’"‘ff"*q GSFC SEW98
N|S|- Fraunhofer USA Fraunhofer Center ';@‘

Maryland TRy b 3

Research vaidation methods

o Case study e Project monitoring

e Dynamic analysis * Replicated

* Held study o Simulation

* | egacy data o Static analysis

e Lessonslearned o Synthetic

e Literature search e Theoretical analysis
NIST FUTNOTer USA pypoter Canter @/ R

Maryland TRy b 4

|ndustrial transition methods

o Case study * Research literature
e Datamining » Shadow (replicated) proj.
e Demonstrator project ** ¢ State of the art
* Feature benchmark e Survey *
e Field study * * Theoretical analysis
e Measurement « Vendor opinion
* Pilot study ** e Traning +
* People +
NIST FUTNOTer USA pypoter Canter @/ o

Maryland TRy b 5

Evaluation of 612 journal papers

(May, 1998 IEEE Computer)

Method ICSE Soft. TSE |ICSE Soft. TSE |ICSE Soft. TSE

Not applicable 6 6 3 4 16 2 5 7 1| 50
No experimentation| 13| 10 38 7 8 22 7 3 7] 115
Replicated 1 O O O O 1 1 0 3 6
Synthetic 3 1 1 0 1 4 0 0 2] 12
Dynamic analysis 0 0 0 0 0 3 0 0 4 7
Simulation 2 0 10 0 0 11 1 1 6] 31
Project monitoring 0 0 0 0 1 0 0 0 0 1
Case study 5 2 12 7 6 6 4 6 10| 58
Assertion 120 13| 54| 12| 19 42 4, 14| 22| 192
Field study 1 0 1 0 0 1 1 1 2 7
Literature search 1 1 3 1 5 1 0 3 2| 17
Legacy data 1 1 2 2 0 2 1 1 1| 11
Lessons learned 7 5 4 1 4 8 5 7 8] 49
Static analysis 1 0 1 0 0 0 0 0 2 4
Theory 3 1/ 18 1 0 19 3 0 7] 52
Yearly totals 56 40 147 35 60 122| 32 43| 77| 612

S, GSFC SEWO8
N'Sl- Fraunhofer USA Fraunhofer Center I; M ‘

Maryland TRy b

6

Relative use of each method

Theory
Static analysis WE
Lessons learned | '
Legacy data
Literature search
= Field study
é Assertion e —
s + \
E Case study
g Project monitoring :
Simulation I
Dynamic analysis
Synthetic 0 1995 (152 papers)
B 1990 (217 papers)
Replicated @ 1985 (243 papers)
No experimentation _ ‘ —
6 5 1‘0 1‘5 2‘0 2‘5 30 3"5 40

Per cent papers

S GSFC SEW98

!

N|S|- Fraunhofer USA Fraunhofer Center) @F”

Maryland % s 7

TRy LAY

1998 Study

e Determine perceptions of which methods should
ne most effective

e Perform survey over internet

e Obtain results from researchers and practitioners
alike

e Concept based upon WESS ‘97 paper by J. Daly,
K. El Emam, and J. Miller

2 GSFC SEW98
N|S|- Fraunhofer USA Fraunhofer Center ';@‘

Maryland TRy b 8

Sample populations

 |nvitations to participate randomly generated

* Research population - U.S.-based authors from research
software engineering conferences with email addresses

 Industrial population - U.S.-based authors from industrial
software engineering conferences with email addresses

e Professional M S degree students with industrial experience,
filled out research form

« 150 invitations sent to each group, about 50 agreed and were
sent form, about half returned form

o 44 of 46 students returned form
e Tota data: 62 research forms, 25 industrial forms

SPn GSFC SEW98

N'Sl- Fraunhofer USA Fraunhofer Center

; o
Maryland TRy BT

Survey questions

Rate from 1-20 relative difficulty of each method according to the
7 criteria (1 easy, 20 impossible, 10 maximum practical):

— How easy isit to use this method in practice?

— What is cost of adding one extra subject to study?

— What isthe internal validity of the method?
— What isthe external validity of the method?

— What isthe ease of replication?

— What is the potential for theory generation?
— What is the potential for theory confirmation?

NIST

Fraunhofer USA £ 1 oer center

Maryland

.‘L'\;'.I‘-'\-I'

“r GSFC SEW98

10

Summary of participants

Sample Survey Sample Years Acad. Indust. Indust. Other (e.g.,
Size exper. Pos. R&D Devel. Consult.)

1 (Research) Research 18 18.6 9 3 3 3
2 (Industry) Industry 25 191 O 5 g 12
3 (Students) Research 44 6.6 1 5 57 11

Suailr, GSFC SEW98
N|S|- Fraunhofer USA o inhofer Center '; :

Maryland e 11

Research group results

1-case study 2-dynamic analysis 3-field study 4-lessons learned 5-legacy data 6-project monitoring 7-literature search 8-
replicated experiment 9-simulation 10-static analysis 11-synthetic study 12-theoretical analysis

18

Easy to do?

16

Additional $ Internal valid| External valid [Ease of repl Theory gen Theory conf

14

12

10

S GSFC SEW98
Fraunhofer USA oo inhofer Center) @

Maryland RS 12

Industrial group results

1-case study 2-data mining 3-demonstrator projects 4-feature benchmark 5-field study 6-measurement 7-pilot study 8-research literature 9-
shadow(replicated) project 10-state of the art 11-survey 12-theoretical analysis 13-vendor opinion

18

Easy to do

16

Additional $ Internal valid

Ext validity

Ease of repl

Theory Gen THeory conf.

14

12

10

4'7
~1

NIST

Fraunhofer USA

Fraunhofer Center

Maryland

S GSFC SEW98

2 13

14

12

10

Student group results

1-case study 2-dynamic analysis 3-field study 4-lessons learned 5-legacy data 6-project monitoring 7-literature search 8-
replicated experiment 9-simulation 10-static analysis 11-synthetic study 12-theoretical analysis

Easy to do Additional $ Internal valid Ext validity Ease of repl Theory gen Theory confirm
r . - I 7- [" r
7 7
. { ,
{ 7 7 7

st GSFC SEW9S

1= L1

N'Sl- Fraunhofer USA Fraunhofer Center % A
%-gf. iy 14

LB

Maryland

Technique Distribution

e Practical techniques - Better than average - Each
method whose upper confidence interval was
below the average value for all techniques

e |Impractical - Worse than average - Each method
whose lower confidence interval was above the
average value for all methods

 Neutral - All other methods

_?ﬁ‘-’"‘ffq GSFC SEW98
ler Fraunhofer USA Fraunhofer Center I;@?

Maryland v 15

Research Technigue Distribution

Easy Addit.$ |Int.vd. |Bx.Vd. Eaed Re. | Theory
Theory Gen. Carf.
Pragical |Dynad Legry | Dynad. Dyn ad. Redicated
Lesleamed | da Redicated Smuaion
Legeoyca | Prg.mon Saicand.
Saicand. Sdic
ad.
Impradica | Redicated Redicated | Casedudy Cazdudy Legecy deta
Srhetic Held sudy
Les leamed
SUgilr, GSFC SEW98
N|S|- Fraunhofer USA Fraunhofer Center .

Maryland

16

Research Technigue Distribution

- Industry(Students)

Easy Addit.$ | Int.Vd. Ext.vVd. |Eaed Theory Theory
Repl. Gan. Canf,
Pradical | Cesedudy | Caedudy | Casedudy | Caedudy | Casedudy | Cesesudy | Hdd dudy
Legacy oeta | Legecy cta | Dynand. | Legeoy deta Hed qudy
Pg.mon | Pg.mon | Smuaion Theory ad.
Lit. search
Impradica | Redicated | Rgdicated | Prg.mon | Syrthetic Pg.mon | Pg. mon
Snidic | Snihdic | Theay ad. | Theary ad.
Theay ad. | Theary ad.
Sy, GSFC SEWS
N|S|- Fraunhofer USA Fraunhofer Center ';@L” 17

Maryland

Industry Technique Distribution -
|Industry

Easy Addt $ Int.vVd. |BEd.Vd. |Eaed Thery Thery
Redl. Gan. Caftf.
Pradicd | Ceedudy | Lit. Res Mesmsre |Hdddudy |Messre | Daamining | Hddsudy
Rladwdy | Savey Meeare | Lit.res Mesre | Messure
Sivey Ve Theay adl.
Vado gqanion
ganon
Impradical | Redicated | Redicated | Satedf at | Sated at Vado Saed at
Vado Vado ganon Vado
ganon ganon ganon
SUgilr, GSFC SEW98
N|S|- Fraunhofer USA Fraunhofer Center ,,”

Maryland

18

Relative Importance of criteria

(when making a decision)

Value of Questions

g @ research
6 - W industry

4 0O student

1 2 3 4) 6 7
1=easy to do; 2=additional $; 3=int. validity;
4=ext. validity; 5=ease of repl.; 6=theory gen.;
7=theory conf.

NIST

Fraunhofer USA £ 1 oer center

Maryland

5 -
= o

1

GERE,
L

. A
o
TRy LA

GSFC SEW98

19

Composite measure
(sum individual criteria)

Sample 1 Sample 3 Sample?2
Resear ch group Student group Industry group
Simulation 288 | Case study 284 | Measurement 258
Static analysis 292 | Legacy data 314 | Datamining 305
Dynamic analysis 298 | Field study 315 | Theoretical analysis 324
Project monitoring 301 | Simulation 333 | Literature research 325
L essons learned 339 | Dynamic analysis 355 | Case study 326
Legacy data 345 | Static analysis 361 | Field study 327
Synthetic study 346 | Literature search 370 | Pilot study 329
Theoretical analysis 348 | Replicated experiment 387 | Feature benchmark 338
Field study 363 | Project monitoring 388 | Survey 343
Literature search 367 | Lessonslearned 391 | Demonstrator project 345
Replicated experiment 368 | Theoretical analysis 405 | Replicated project 361
Case study 398 | Synthetic study 418 | State of art 407
Vendor opinion 469
_?ﬁ‘f-‘“'f'fh% GSFC SEW98
N|S|- Fraunhofer USA Fraunhofer Center C ,,b
éw-gﬁ 1,!‘\":} 20

Maryland

Composite measures

 For the research community, tools-based
techniques dominate the rankings

e For the student community, those techniques that
confirm atechnique in the field dominate the
rankings

e For theindustrial group, measurement and data
mining clearly dominates the ranking even though
rarely done In practice

» For the industrial group, state of the art and vendor
opinion came last, so why resort to that so often?

b ¥ GSFC SEW98
N|S|- Fraunhofer USA Fraunhofer Center 4 A
Maryland TRy L b 21

Current plan

« Develop new survey instrument on actual experiences
In transferring a technol ogy

« Working with Shari Lawrence Pfleeger
e Obtain large industrial sample
— Models of experimental validation - 1996

— Perceptions among research and practitioner
communities - 1998

— Experiences of experimental validation - planned

S GSFC SEW98

NIST Fraunhofer USA g o inhofer center I;,@«

Maryland S 22

Conclusions

e Conflicting views. Researchers use tools; industry wants
field experiences- Need for better understanding of needs
of both communities (publications vs. practicality)

 Measurement viewed as important, but anecdotal evidence
that not practiced much

e |t would aid both communities if those techniques near the
top of the rankings had better tool support

* Need evaluation process to determine most effective
method for a given new technology

ST GSFC SEWO8

N'Sl- Fraunhofer USA Fraunhofer Center

Maryland TRyt S 23

An Adaptation of Experimental Design to the Empirical Validation of Software
Engineering Theories

N. Juristo, A.M. Moreno

Facultad de Informética - Universidad Politécnica de Madrid -
Campus de Montegancedo s/n, 28660 Madrid
Tel.: + 34 91 336 69 22; Fax: + 34 91 336 69 17
{natalia, ammoreno} @fi.upm.es

Abstract

This paper has two objectives. Firstly, it seeks to promote discussion and debate about the need to
encourage experimentation of the claims in the field of software engineering. The software community’s
lack of concern for the need for the aforesaid experimentation is slowing down adoption of new
technology by organizations unfurnished with objective data that show the benefits of the new artifacts to
be introduced. This situation is also leading the introduction of new software technology to be considered
as arisk, because, as it has not been formally validated beforehand, its application can cause disastersin
user organizations. The second objective is to present a formal method of experimentation in SE, based
on the experimental design and analysis techniques used in other branches of science.

1. Introduction

Companies are continuously developing new, increasingly complex and, ultimately, more expensive
software systems. This should be a condition for applying the range of development artifactsin areliable
manner. Paradoxically, however, rea-world developments are often used as a culture medium for
validating these artifacts, with the ensuing risks. There is no denying, unfortunately, that the models and
theories outputted by Software Engineering (SE) research are not checked against redlity as often as
would be necessary to assure their validity for use in software construction. This can lead to justified
distrust when applying the new solutions developed at laboratories or research centersin industry.

It is, therefore, essential to apply a process of experimental testing to validate any contribution made to
SE. This paper seeks to highlight the need for an empirical validation of all artifacts used in SE, and then
proposes an approach to introduce this based on experimental design techniques, widely used in other
fields of science and engineering. Other researchers, including Basili [Basili, 86] and Pfleeger [Pfleeger,
95], have published work on experimental design and SE. In this paper, we aim to address in detail
particular points, such as the parameters to be controlled in a SE experiment, and will set out several
examples of how different types of experimental design can be applied to SE.

So as show the lack of empirical validation in the field of SE, the authors have compared what we have
called the essence of the scientific method with SE research. The essence of the scientific method relates
to certain characteristics common to the different methods of research with regard to the manner of
attaining new knowledge. These common features can be divided into the following activities:

Interaction with reality, which involves obtaining facts from reality. It can be performed by means of
observation, where researchers merely perceive facts from the outside, or by means of
experimentation, where researchers subject the object to new conditions and observe the reactions.

Speculation, where researchers think about the perception obtained from the outside world. The
results of this thinking range from a mere description of particular cases, through hypotheses and
models, to general laws and theories.

Checking ideas against reality in order to assure the truth of the speculations. It can safely be said
that it is this stage that lends research its scientific value, as the stages of interacting with reality and
speculation occur in other intellectual disciplines far from being considered scientific; for example,
philosophy, religion, politics, etc. A branch of human knowledge attains the status of scientific when
speculations are verifiable and, therefore, valid (although this status is always held provisionally until
contradicted by a new reality). Remember that engineering fields depend on scientific knowledge to

1

build their artifacts.

When comparing the essence of the scientific method and research in SE, there are a series of
discrepancies, including importantly the lack of emphasis on the experimental validation activity. In fact,
present scientific progress in the software community appears to be based on natural selection. That is,
researchers throw their lucubrations into the arena almost untested. After a few years or decades,
theoretically, the fittest survives. Note the risk involved in this manner of scientific progress, as fashion,
researcher credibility, etc., also play a prominent role in science. This way of selecting valid knowledge
involves important risks when industry applies this new knowledge.

Statements claiming that SE experimentation is not needed can be heard frequently in SE. One of the
arguments is that the “Romans built bridges and were not acquainted with the scientific method”.
Obviously, humans can generate valid knowledge by means of trial and error. However, this approach is
longer and more chancy than the scientific method. If a critical software system fails and causes a
disaster, could we say that we in SE prefer the old trial-and-error approach rather than experimental
validation as called for by the scientific method? Another justification used to refute SE experimentation
is based on trusting in intuition. Several examples can be used to reject this statement, for example, the
fact that small software components are proportionaly less reliable than larger ones, as reported by Basili
[Basili, 94] among others. In [Tichy, 98] the author presents some arguments traditionally used to reject
the usefulness of experimentation in this area with the corresponding refutation.

Although there are some experimental studies in the computer science literature [Prechelt, 98] [Frankl,
93] [Seaman, 98] [lyer, 90], thisis not the genera rule. The want of experimental rigor in SE has already
been stressed by authors like Zelkowitz [Zelkowitz, 98] or Tichy [Tichy, 93] [Tichy, 95], who base this
affirmation on a study of the papers published in severa system-oriented journas. Surveys such as
Zelkowitz's and Tichy's tend to validate the conclusion that the SE community can do a better job in
reporting its results, making them more trustworthy and thus making it easier for industry to adopt the
new research results.

2. Experimental Design for Software Engineering

Once that the need for empirical validation in SE has been assumed, the authors propose an approach to
introduce it based on experimental design techniques [Box, 78] [Selwyn, 96] [Clarke, 97] [Edwards, 98]
used in others fields of science.

Empirical validation can be carried out in several situations : laboratory validation of theories, validation
at the level of real projects and validation by means of historical data. Unlike the other two methods,
laboratory validation allows greater control of the different parameters that affect software devel opment.
Real projects allow data considered to be relevant for the study in question to be collected. Validation
using historical data allows researchers to work with data on finished projects, employing the most
relevant for the experiment to be conducted. Zelkowitz [Zelkowitz, 98] and Kitchenham [Kitchenham, 96]
suggested similar classifications. Zelkowitz groups experimental approaches into three broad categories:
controlled methods, observational methods and historical methods, while Kitchenham refers to these
categories of experimentation as formal experiments, case studies, and surveys. An example of
experimentation with real projects isthe experience factory proposed by Basili [Basili, 95], historical data
have been applied by McGarry [McGarry, 97] among others, and formal experiments have been studied
by Pfleeger [Pfleeger, 95] in the DESMET project.

In this paper, we focus on forma experiments and present an in-depth study of the application of
experimental design to SE empirical validation, placing specia emphasis on the adaptation of
experimental design terminology to SE. Table 1 summarizes the above-mentioned experimentation
process. Table 2 describes the application of experimental design concepts to SE. Table 3 shows the value
of some of the experimental design concepts for SE experimentation. Finally, Table 4 presents a summary
of the experimental design techniques that can be applied.

Phase of the experiment

Description

Defining the Objectives of the
Experiment.

The mathematical techniques of experimental design demand that
experiments produce quantitative results. Therefore formal experimentation
in SE requires quantifiable hypotheses. This hypothesis will be usually
expressed in terms of a metric of the software product developed using the
software artifact to be analyzed or of the development process where this
artifact has been applied.

Designing the Experiment

In order to plan experimentation in SE according to experimental design
guidelines, its terminology has to be applied to SE. See table 2 with the
terminology employed in experimental design for generic experimentation,
and its application to experimentsin SE.

The next step is to select the experimental design technique. This technique
will determine how many experiments are required, how many times each
experiment has to be repeated and what data we need to output to ascertain
the validity of the conclusions. There are different techniques of
experimental design depending on the aim of the experiment, the number of
factors, the levels of the factors, etc. Table 4 shows a brief summary of the
most commonly used experimental design techniques.

Executing Experiments

The software engineer is now ready to execute the experiments indicated as a
result of the preceding design stage, measuring the response variables at the
end of each experiment.

Analyzing Results

This stage is also called Experimental Analysis. The software engineer will
quantify the impact of each factor and each interaction between factors on the
variation of the response variable. Thisiswhat isreferred to (according to
experimental design terminology) as “the statistical significance of the
differences in the response variable due to the different levels of each

factor”.

If there is no statistical significance, the variation in the response
variable can be put down to chance or to another variable not
considered in the experiment.

If there is statistical significance, the variation in the response variable
is due to the fact that a certain level (or combination of levels of
different factors) causes improvementsin the response variable.

When we have understood the impact, we can ascertain which alternative of
which factor significantly improves the value of the response variable.

Depending on the experimental design technique applied in the preceding
stage, a different statistical technique must be used to achieve the above
objective. This is not the place to expound the underlying mathematics of
experimental analysis. Interested readers are referred to the references
already mentioned. Section 3 shows some examples of SE experiments
illustrating different experimental design and analysis techniques.

Table 1. Phases of the Experimental Design Process used for SE Experiments

Concept Description Applicationin SE

Experimental Entity used to conduct the experiment | Software projects

unit

Parameters Characteristic (qualitative or | Seetable 3
quantitative) of the experimental unit

Response Datum to be measured during the|See table 3. Note there are no response

variable experimental unit variables relating to the “problem”. This

is because response variables are data that
can be measured a posteriori, that is,
once the experiment is complete. In the
case of SE, the experiment involves
development (in full or in part) of a
software system to which particular
technologies are applied. The
characteristics of the problem to be
solved are the experiment input data, that
is, they dtipulate how it will be
performed. As such, they are parameters
and factors of the experiment. However,
they are not experimental output data that
can be measured and, thus, do not
generate response variables.

Factor Parameter that affects the response | Factors are chosen from the parametersin
variable and whose impact is of [table 3. Factors have different values
interest for the study during the experiment

Level Possible values or alternatives of the|Vaues of factorsin table 3
factors

Interaction The effect of one factor depends on | Relations between the parameters in table
the level of another 3; for example, problem complexity and

product complexity

Replication Repetition of each experiment to be| Repeatability in SE must be based on
sure of the measurement taken of the|analogy, not on identity; the different
response variable experiments will consist of similar

problems, similar processes, similar
teams, etc.

Design Specification of the number of | The design will indicate the number of

experiments, selection of factors,
combinations of levels of each factor
for each experiment and the number of
replications per experiment

software projects, factors and their
aternatives that will be used during
experimentation, as well as the number of
replications of the experiments, based on
analogy.

Table 2. Application of experimental design conceptsto SE

PARAMETERS

PROBLEM PROCESSES PERSONS PRODUCT
(User need) of construction (team of developers)
employed
Definition - Maturity - Number of Type of life cycle to be
(poorly/well - Description (set of members followed
defined problem) phases, activities, |- Division by Software type (OO,
Need volatility products, etc.) positions (no. of databases, rea time,
(very/hardly/non |- Relationship software expert system, etc.)
volatile need) between members engineers, Size
Ease of | (definition of programmers, Complexity
understanding interrelations project managers, Architecture/Organizatio
(problem between team etc.) n
well/poorly/fairly members) - Years of Hardware platform
well understood by |- Automation (in experience of each Interaction with other
developers) which phases or| member in| software
Problem activities tools are| development Processing conditions
complexity used) - Experience of (batch, on-line, etc.)
Problem type (data|- Risks each member in|. security requirements
processing, the problem type Response-time
knowledge use, - Experience of | requirements
efc.), _ each member in|_ pooymentation required
Problem-solving the so_ftware Help required
type (procedural, process applied
heuristic, real-time - Background of
problem solving, each member
etc.) (discipline of
Domain origin)
(aeronautics, - Type of
insurance, etc.) relationship
User type (expert, between members
novice, etc.) @@l in the same
building, same
town,
subcontracts, etc.)
RESPONSE VARIABLES
PROBLEM PROCESS PERSONS PRODUCT
- Schedule deviation |- Productivity Correctness of products
- Budget deviation - User satisfaction obtained (no. of errors,
- Compliance with - usability etc.)
construction process - usefulness Validity of the products
- Products obtained (compliance with
(do they comply customer expectations)
with the process Portability,
stipulations?) Maintainability,
Extendibility,
Performance, Flexibility,
Interoperability, ...
Table 3. Proposal of Parameters and Response Variables for SE research

]
CONDITIONS OF THE EXPERIMENT I EXPERIMENTAL DESGIN TECHNIQUE
i
|
|
All other parameters 1 .
have been fixed E==>> One factor experiment
|
One factor of I
interest
(2or nlevels) Some parameters are :
- irrelevant for the experiment i i
g$@0r|cd and can not be fix | === Blocking Experiment
ors
and |
Quantitative' 1
Experiment:
Response I .
1 Blocking
K factors of inter Some parameters are | =2 o Design
(20r n levels) irrelevant ;
With Replication
Factorial ’
rkexperiments | E=E Design
| \Without Replication
All levels of factors are relevan 1
« ! Fractional With Replication
lessthan n 1 === Factorid ¢V
experiments I Design
I ‘ Without Replication
|
Quantitative |
Eaecsgﬁsa: d : = Regression Models
Variables I
|

Table 4. Different Experimental Design Techniques

3. Example of SE Experimentsusing Experimental Design

This section presents two examples of possible SE experiments employing the experimental design
process described in Table 1. Depending on the experimental desgin techingue used, different analysis
methods must be applied. During the experimental analysis phase, we will not enter into a detailed
justification of all the mathematical calculations; our objective is simply to give readers a taste of what
sort of work could be performed during an experimentation in SE, avoiding the tiresome, though simple,
calculations called for by experimental analysis.

3.1. One Factor Experiment

Suppose we are researching on a CASE tool, and we think it will increase programmers productivity. We
will compare this tool with two other tools widely used in industry and each experiment will be repeated
five times, in order to consider experimental errors. The response variable will be programmers
productivity (lines of code/person-day) and all other parameters of table 3 will be fixed. This is an
example of one factor experiment. This kind of experimental design is used to determine the best choice
of k alternatives (in our case of three alternatives).

Table 5 shows the fifteen observations of the response variable (column Z contains the values for the new
toal).

R \ Z
144 101 130
120 144 180
176 211 141
288 288 374
144 72 302

Table 5. Value of the response variables

The analysis if this experiment is shown in table 6. From this table we can know that the mean value of
productuvity of a CASE tool is 187,7 lines/person-day. The effects of tools R, V and Z are -13,3, -24,5
and 37,7, respectively. That means that tool R provides 13,3 lines less than the mean, tool V provides
24,5 lines less than the mean, and tool V provides 37,7 lines more than the mean.

R V Z

144 101 130

120 144 180

176 211 141

288 288 374

144 72 302
oum of the column 4, = 872 ay, =816 & v, = 1127 &Y. =2815

ean of the column = - -
Effect of the column Y1 = 1744 Y, =163.2 Y;= 2254 n,. =187.7
a, =Y;-Y.=-133 aY,-Y.=-244 gy -y =377

Table 6. Data from the experimental analysis of the example

The second step involves calculating the sum of the squared errors (SSE) in order to estimate the variance
of the errors and the confidence interval for effects. For that aim each observation will be divided in three
parts: the grand mean, the effect of the tool, and the residuals. For each part we have used a matrix
notation.

@44 101 130} @87.7 187.7 187.7() & 133 -245 37.7() &304 -62.2 -954
@20 144 180, @87.7 ua é U &544 -19.2 -454(
é176 211 141 a= é187.7 uté uté 1.6 478 - 84.4l:l
§88 288 374 a é1_87 7 a é a é113 6 1248 148.6 a
a44 72 3027 @8r.7 187.7(1) 133 -245 37.70 &304 -91.2 76.6 (]

r a

o O
SSE= Aa €= (-30,4)%+ (-54,4)%+ ... +(76,6) = 94.365,20

=1 j=1
Next step is calculating the variation in the response variable due to the factor and to the experimental
error. For that aim we calculate the sum of squarestotal (SST).

ssT=ra [}% + SSE = 5 ((-13,3)° + (-24,5)* + (37,6)%) + 94.365,2 = 105.357,3
i

The percentage of variation in the response variable explained by CASE tools is 10,4%
(10.992,13/105.357,3). The rest of the variation 89,6% is due to experimental errors. That means that the
experiment has not been planned properly.

In order to determine whether the variation of 10,4% in the productivity has statistical significance we
have to use the ANOVA (Anaysis Of VAriance) technique, with the F-test function and table (this table
is not included in the paper, readers can find them in the bibliography of experimental design mentioned
above). The technique seeks to compare the contribution of the factor to the variation in the response
variable with the contribution of the errors. If the variation due to errors is high, a factor that explains a
high variation in the response variable might has not statistical significance. In order to determine the
statistical significance we will compare the computed F-value with the value got from the F-table, as
shownintable 7.

Table 8 shows the ANOVA analysis for our example. The calculated F-value is smaller than the one got
from the F-table. Therefore, we can, again, conclude that the difference in productivity is mainly due to
experimental errors instead of to the CASE toals. In that sense, we can state that neither tool provides
more productivity than the others.

COMPONENT SUM OF PERCENTAGE DEGREES MEAN F- F-

SQUARES OF VARIATION OF SQUARE .\ oUtED TABLE
FREEDOM
Y sy =av’ ar
Y. SO =arnf 1
Y-v. ST = S5Y - SO 100 ar-1
o E53A - = MSA Fi- aca- ta- 1
sA =r@a/’ 100é§g a-l M =TT MSE [:
© SE = SST - SA a(r-1) - S
100i$ﬁb MSE = a(r-1
essr 9
S, = JMSE
Table 7. ANOVA table for one factor experiments
Y 633,639.00
Y. 528,281.69
Y-Y.. 105.357,31 100.00 14
A 10.992,13 10.4 2 5496.1 0.7 2.8
Errors 94.365,20 89.6 12 7863.8

s, =JMSE =+7863.77 = 83.68

Table 8. ANOVA table for our experiment

3.2. Factorial Design with Replication

Suppose that we have invented a new development paradigm that is completely different from the
structured and OO paradigms and want to confirm that our innovation improves development projects.
We will centre on correctness as the response variable, measured, for example, by the number of faults
emerging three months after software deployment. There are a lot of characteristics that have an impact
on this response variable: problem complexity, problem type, process maturity, team experience, software
complexity, integration with other software, etc. However, all of these will be fixed at an intermediate
value (that is, they will be selected as parameters of the experiment), except development paradigm, and
software complexity which will be factors. Each factor will necessarily admit two alternatives to simplify
the calculations. According to experimental design guidelines, the factors, |abelled with letters, and their
adternatives, labelled with level 1 and -1, are listed, as shown in table 9.

FACTOR NAME LEVEL -1 LEVEL 1
Paradigm A New (0]e)]
Software complexity B Complex Simple

Table 9. Factors and levels of the experiment

We will use a factorial design with replication as al levels of our factors are relevant for the experiment,
and we want to consider the experimental errors. In order to evaluate the experimental errors we will
repeat each experiment three times, so we will get twelve measurements of the response variable.

Taking the measurements of the response variable and the values assigned to the factors in table 9, the
first step of the experimental analysisis to build what is called the sign table. As shown in table 10, the
first column of the matrix is labelled I, and it contains al 1s. The next two columns, labelled with the
factor names, contain all the possible combinations of -1 and 1. The fourth column is the product of the
entries in columns A and B. The twelve observations are then listed in column Y. The entriesin column |
are then multiplied by those in last column, and the sum is then entered under column I. The entries in
column A are then multiplied by those in last column and the sum is entered under column A. This
column multiplication operation is repeated for the remaining columns in the matrix. The sum under each

8

column is divided by 4 to give the corresponding coefficients of the regression model.

I A B AC Y Mean Y

1 -1 -1 1 (15, 18, 12) 15

1 1 -1 -1 (45, 48, 51) 48

1 -1 1 -1 (25, 28, 19) 24

1 1 1 1 (75,75,81) 77
164 86 38 20 Total
41 21.5 9.5 5 Total/4

Table 10. Sign table for a 2° experimentation with replication

The second step involves calculating SSE. Table 11 shows the estimated response and the errors for each
of the twelve observations. The estimated value for the response variable is calculated adding the
products of the effects (Co, Ca, Cg, Cag) and the entries (X, Xs, Xag) inthe sign table.

Effects Estimated Mean Response Errors
Response
I A B AB
i 41 21.5 9.5 5 Yi1 Y12 Yis €i1 €i2 €i3
1 1 -1 -1 1 15 15 18 12 0 3 3
2 1 1 -1 1 48 45 48 51 3 0 3
3 1 -1 1 1 24 25 28 19 1 4 5
4 1 1 1 77 75 75 81 2 -2 4

Table 11. Errorsin each experiment
The sum the squared errorsis:
[]
SSE = A g ?= 0%+3%(-3)"+(-3)%+ 0%4+3%+1%+(-5)+(-2)*+(-2)+4” = 102
i
Now we want to calculate the variation in the response variable due to each factor or combination of
factors, and to the experimental error. For that aim we calculate SST.

o
SST = 21 Cp%+ 21 Cg®+ 2°r Cpg®+ A & ° = 5,547 + 1,083 + 300 + 102 = 7,032

i
Factor A explains 78,88% (5,547/7,032) of the variation, factor B explains 15,04% and the interaction
AB explains 4,27%. The rest of the variation, 1,45%, is a variation non explicated, and therefore, due to
experimental errors.

4, Conclusions

In this paper, we presented a possible adaptation of the experimental design techniques used in other
branches of science and engineering to perform experimentsin SE.

The objective of the paper is not only to present a means of carrying out formal experimentation in SE but
also to promote discussion and debate on the need to encourage experimentation of the claims in this
field. The software community’s lack of concern for the need for the aforesaid experimentation is slowing
down adoption of new technology by organizations unfurnished with objective data that show the benefits
of the new artifacts to be introduced. This situation is also leading the introduction of new software
technology to be considered as a risk, because, as it has not been formally validated beforehand, its
application can cause disastersin user organizations.

We are aware that software development's marked economic and commercial nature can be a decisive
factor standing in the way of the necessary experimentation, as experimentation does not produce
tangible, short-term benefits. The benefit of experimentation will come to fruition in future development
projects, and this benefit is difficult to quantify at the time of deciding on experimental feasibility or the
number of experiments to be performed. However, as we have already said, experimentation can also stop

industry taking unnecessary risks by adopting proposals that have not been satisfactorily tested.

5. References
[Basili, 84] V.R. Basili, B.T. Pericone. Software Errors and Complexity: An Empirical Investigation.
Communications of the ACM, January 1984, pp. 42-52.

[Basili, 86] V.R. Basili, RW. Selby, D.H. Hutchens. Experimentation in Software Engineering. |IEEE Transactions
on Softwar e Engineering, vol. 12 (7), July 1986, pp. 733-743.

[Basili, 95] V. R. Basili. The Experience Factory and Its Relationship to Other Quality Approaches, Academic Press
Inc., Adnvancesin Computers, Volume 41, 1995.

[Box, 78] Box, G.E.P., Hunter W.G. and Hunter, J.S. Statistics for Experiments. Wiley, New Y ork, (USA), 1978.

[Clarke, 97] Clarke, G.M. and Kempson, R.E. Introduction to the Design & Analysis of Experiments. Wiley &
Sons, New York (USA), 1997.

[Edwards, 98] Edwards, A.L. Experimental Design. Addison-Wesley Educational Publishers, Delaware (USA),
1998.

[Frankl, 93] P.G. Frankl, S.N. Weiss. An Experimental Comparison of the Effectiveness of Branch Testing and Data
Flow Testing. | EEE Transactions on Softwar e Engineering, vol. 19 (8), August 1993.

[lyer, 90] lyer, R.K. Special Section on Experimental Computer Science. |IEEE Transactions on Software
Engineering, vol. 16 (2), February 1990.

[Kitchenham, 96] Kitchenham, B. Evaluating Software Engineering Methods and Tools. Parts 1 to 8. SIGSOFT
Notes 1996 and 1997.

[McGarry, 97] F. McGarry, S. Burke, W. Deker and J. Haskell. Measuring Impacts of Software Process Maturity in
a Production Environment. 22nd NASA Workshop on Software Engineering, Maryland, USA, December 1997,
pp. 193-220.

[Pfleeger, 95] Pfleeger, S.L. Experimental Design and Analysis in Software Engineering. Annals of Software
Engineering, vol. 1, 1995, 219-253.

[Prechelt, 98] Prechelt, L and Tichy, W.F. A Controlled Experiment to Assess the Benefits of Procedure Argument
Type Checking. | EEE Transactions on Softwar e Engineering, vol. 24 (4), April 1998, 302-318.

[Seaman, 98] Seaman, C.B. and V.R. Basili. Communication and Organization: An Empirical Study of Discussion in
Inspection Meetings. | EEE Transactions on Software Engineering, vol. 24 (7), July 1998, 559-572.

[Selwyn, 96] Selwyn, M.R. Principles of Experimental Design for the Life Sciences. CRC Press Inc. (UK) 1996.

[Tichy, 93] Tichy, W.F. On Experimental Computer Science. International Workshop on Experimental Software
Engineering Issues. Critical Assessment and Future Directions. Proceedings, 1993, 30-32.

[Tichy, 95] Tichy, W.F. et a. Experimental Evaluation in Computer Science: A Quantitative Study. Journal of
Systems and Softwar e, vol. 28, 1995, 9-18.

[Tichy, 98] Tichy, W.F. Should Computer Scientists Experiment More ? |EEE Computer, May 1998,32-40.

[Zelkowitz, 98] Zelkowitz, M, Wallace, R. Experimental Models for Validating Technology. |EEE Computer, May
1998, 23-31.

10

Experimental Design for SE Juristo & Moreno

AN ADAPTATION OF
EXPERIMENTAL DESIGN TO
THE EMPIRICAL VALIDATION
OF SOFTWARE ENGINEERING
THEORIES

N. Juristo A. M. Moreno
Facultad de Informatica
Universidad Politécnica de Madrid
SPAIN

NASA SEW’98

Experimental Design for SE

Juristo & Moreno

NS REw

CONTENTS

. PROBLEM: Validation of SE ideas

About validation of Se ideas:

- When? & How?

- Implications

- Alternative ways

What is experimentation

Kinds of empirical validation

Our proposal: A way to perform formal Lab Experiments
Some concepts of Experimental Design (ED)
Adaptation of ED concepts to SE:

- Terminology

- Parameters and Response Variables

- Example

NASA SEW’98

Experimental Design for SE Juristo & Moreno

PROBLEM

Are we sure about the ideas* we use in software development?

v

Iet’s think about the VALIDATION OF SE IDEAS

*idea = concept, paradigm, method, technique, tool, etc.

NASA SEW’98

Experimental Design for SE Juristo & Moreno

VALIDATION OF SE IDEAS
When? How?

When are we sure that a proposed idea works?

@

After years of use

How do we validate ideas?

W

Natural selection

NASA SEW’98

Experimental Design for SE

Juristo & Moreno

VALIDATION OF SE IDEAS
Implications

— Ideas have not been validated before being proposed to

the community.

— Industry uses non-reliable ideas when constructing

software.

NASA SEW’98

Experimental Design for SE

Juristo & Moreno

VALIDATION OF SE IDEAS
Other way?

Is there a different way of doing things?

NV

Yes, through EXPERIMENTATION

Do other scientific and engineering fields validate ideas the

same way we do?

WV

No, thet do it through EXPERIMENTATION

(@)

NASA SEW’98

Experimental Design for SE Juristo & Moreno

WHAT IS EXPERIMENTATION?

— Experimentation makes the difference between science
& engineering and other academic disciplines

— Quantitative study of phenomena
— Test/ideas against reality (Empirical Validation)

NASA SEW’98

Experimental Design for SE Juristo & Moreno

KINDS OF EMPIRICAL
VALIDATION

— Formal Laboratory Experiments
— Case Studies: Real projects
— Use of Historical Data

NASA SEW’98

Experimental Design for SE Juristo & Moreno

OUR PROPOSAL

A way to perform Formal Lab Experiments

An Approach to Empirical Validation of SE Ideas
in the Laboratory

V

Perform Formal Experiments Using EXPERIMENTAL
DESIGN Adapted to SE

NASA SEW’98

Experimental Design for SE Juristo & Moreno

SOME CONCEPTS OF
EXPERIMENTAL DESIGN

— Proposed early in the 20th century by Sir Ronald
Fisher

— It is routinely used by other engincering fields:
Chemustry, Agriculture, Pharmaceuticals, ...

— It establishes mathematical foundations to perform

experiments, choose the variables of the experiments,
collect and analyse data and arrive at conclusions

— The main concept is the idea of statistical significance

10 NASA SEW’98

Experimental Design for SE Juristo & Moreno

SOME CONCEPTS OF
EXPERIMENTAL DESIGN

Diferent Techniques for Diferent Situations

CONDITIONS OF THE EXPERIMENT EXPERIMENTAL DESGIN TECHNIQUE

All other parameters
have been fixed

m One factor experiment

Onme factor of
interest
(2 om levels)

There are some parameters

irrelevant for the experiment

Categorical but that can not be fixed

Factors
and
Quantitati
Experimen
Response

emfe- Bloking Experiment

Bloking
m Factorial Design

K factors of intere Some parameters are
(2 om levels) irrelevant

With Replication
P el o

® Design
%Wi:hou: Replication

experiments

All levels of factors are relev

Fractional With Replication
3

less than n ez Factorial @

experiments Design

% Without Replication

Quantitative
Factors and
Response
Variables

e Regression Models

1 NASA SEW’98

Experimental Design for SE

Juristo & Moreno

ADAPTATION OF ED CONCEPTS TO SE

Terminology

Concept

Description

Application in SE

Experimental unit

Entity used to conduct the experiment

Software projects

Parameters

Characteristic (qualitative or quantitative) of
the experimental unit

See

Response variable

Datum to be measured during the experimental
unit

See kect table. Note there are no response
variables relating to “problem™. This is because
response variables are data that can be measured a
posteriori, that is, once the experiment is
complete. In the case of SE, the experiment
involves development (in full or in part) of a
software system to which particular technologies
are applied. The characteristics of the problem to
be solved are the experiment input data, that is,
they stipulate howit will be performed. As such,
they are parameters and factors of the
experiment. However, they are not experiment
output data that can be measured and, thus, do not
generate response variables.

of other

Factor Parameter that affects the response variable | Factors are chosen from parameters in table 3.
and whose impact is of interest for the study | Factors have different values during the
experiment
Level Possible values or alternatives of the factors]| Values of factors in table 3
Interaction The effect of one factor depends on the level | Relations between the parameters in table 3, for

example problem complexity and product
complexity

Replication

Repetition of each experiment to be sure of
the measurement taken of the response
variable

Repeatability in SE must be based on analogy,
not on identity; the different experiments will
consist of similar problems, similar processes,
similar teams, etc.

Design

Specification of the number of experiments,
selection of factors, combinations of levels
of each factor for each experiment and the
number of replications per experiment

The design will indicate the number of software
projects, factors and their alternatives that will
be used during experimentation, as well as the
number of replications of the experiments, based
on analogy.

1

2

NASA SEW’98

Experimental Design for SE Juristo & Moreno

ADAPTATION OF ED CONCEPTS TO SE
Experiments Parameters

PARAMETERS
PROBLEM PROCESSES PERSONS PRODUCT
(User need) of construction employed (team of developers)
Definition - Maturity Number of members Type of life cycle to be
(poorly/well ~ defined| — Description (set of|— Division by positions| foliowed
problem) phases, activities, (no. of software Software type (OO, databases,

Need volatility
(very/hardly/non
volatile need)

Ease of understanding
(problem
well/poorly/fairly well
understood by
developers)

Problem complexity
Problem type (data
processing, knowledge
use, etc.),
Problem-solving type
(procedural, heuristic,
real-time problem
solving, etc.)

Domain (aeronautics,
insurance, etc.)

User type (expert
novice, etc.)

products, etc.)
Relationship between
members (definition of
interrelations between
team members)
Automation (in which
phases or activities
tools are used)

Risks

engineers,
programmers, project
managers, etc.)

Years of experience of
each member in
development
Experience of each
member in the
problem type
Experience of ecach
member in the
software process
applied

Background of each
member (discipline of
origin)

Type of relationship
between members (all
in the same building,
same town,

subcontracts, etc.)

real time, expert system, etc.)
Size

Complexity
Architecture/Organization
Hardware platform

Interaction with other
software

Processing conditions (batch,
on-line, etc.)

Security requirements
Response-time requirements
Documentation required

Help required

[
|98

NASA SEW’98

Experimental Design for SE

ADAPTATION OF ED CONCEPTS TO SE

Response Variable

RESPONSE VARIABLES

PROBLEM PROCESS PERSONS PRODUCT
Schedule — Productivity |- Correctness of]
deviation — User products obtained
Budget satisfaction (no. of errors, etc.)
deviation — usability | — Validity of the
Compiiance — usefuine | products
with SS (compliance with
construction customer
process expectations)
Products — Portability,
obtained (do Maintainability,
they comply Extendibility,
with the process Performance,
stipulations?) Flexibility,

Interonerabilitv

L L LLC Y oo

Juristo & Moreno

NASA SEW’98

Experimental Design for SE Juristo & Moreno

ADAPTATION OF ED CONCEPTS TO SE
Example of Factorial Design

FACTORS: Development Paradigm (new/00)
Process Maturity (high/low)

Problem Complexity (complex/simple)

RESPONSE VARIABLE: Number of errors detected three months
after deployment

ED TECHNIQUE: Factorial Design

RESULT: Correctness is better when the new
paradigm is used

NASA SEW’98

Experimental Design for SE

Juristo & Moreno

ADAPTATION OF ED CONCEPTS TO SE
Example of Factorial Design

ABC
0

fu—
—_—
" . '
[, — —_— —_
' [
el
—
s

p—
—_—
. . ' ¥
[N — —_— —

[,
.

[N

[E—

6140 116 |24

4 |14
I |22
I {10
|34
1 146
4|58
1[50
I |86
9 Jtotal

| |total’8

SST=22(Cp2+ Cg2+C2+Cpg?+ Cp2+ Cge? + Cppc?™

1N £N AN I4s) —
2(102 +52+202+52+22+32+12) =

800 + 200 + 3200 + 32 + 72 + 8 =4512

A (Development Paradigm): 800/4512 = 18%
B (Process Maturity): 200/4512 = 4%

C (Software Complexity): 3200/4512 =71%
AB:200/4512 = 4%

BC: 32/4512=1%

AC:72/4512 =2%

ABC: 8/4512 = 0%

Correctness = 14+46+10+50 /4 =30=40- 10

N/ AL W LALW AT paradlgn = new

Correctness paradign = 0o = 22+58+34+860 /4 =50 =40 - 10

16

NASA SEW’98

Extending Enterprise and Domain Engineering Architectures
to Support the Object Oriented Paradigm

Fred A. Maymir-Ducharme, PhD
Lockheed Martin, Mission Systems
fred.a.maymir-ducharme@Imco.com

1.0 BACKGROUND As the size and complexity of software systems increase and budgets decrease, the
U.S. Government has realized the dire need to provide guidance to develop systems more effectively and
efficiently. We can no longer afford to “reinvent the wheel” every time a new system is needed.
Engineering families of systems, product lines, and exploiting commercia off-the-shelf (COTS) software
and Government off-the-shelf (GOTS) software are just a few approaches to achieving better engineered
systems. In addition, software intensive systems must be able to work together and exchange information.
While interoperability is important for many information systems, it is essential for military systems, which
must be capable of supporting lifesaving operations that may require changing a mix of forces, at a
moment’ s notice, just about anywhere in the world.

U.S. Government has developed architectural guidance and policy to achieve the required interoperability,
as well as engineering systems faster, better and cheaper. These initiatives and products only address
“what” should be done. Program managers and systems engineers tasked to deliver these systems depend
on technology addressing the associated “how to’'s.”” This paper addresses the technology (concepts,
processes, methods and tools) used on multiple programs to effectively and efficiently engineer military
systems, using various architecture guidance, policy and products. One of the major themes (i.e., lessons
learned) of this paper is that there are many conflicts between the technologies associated with Object
Oriented approaches and the more traditional Structured/Functional approaches. If both approaches are
used by an organization, these challenges must be identified early and dealt with accordingly.

2.0 DISCIPLINED SOFTWARE ENGINEERING The way we engineer our systemsis
continuously changing and improving. We can no longer treat each new project as asingle, new and
independent development effort and not build on previous engineering efforts and experience. Instead we
need to view these systems within the context of similar systems built in the past, exploiting the
commonalities and engineering the appropriate variances. Additionally, we must leverage off existing
reusabl e assets and develop new ones with reuse in mind. Reuseis an integral part of a disciplined software
engineering practice, which is continuously improving its technol ogy/asset base and processes. In order to
meet today's software challenges [6] of increasing demand, complexity and size, we need to establish new
ways of fusing together information about what assets exist and need to be woven into the processes used to
guide our engineering activities. Various software engineering methods, processes and tools exist to help
take advantage of available information about data, process, and software assets needed to make the
engineering decisions governing the quality of the products that evolve as a consequence of their

mechani zation.

Digoint engineering efforts (i.e., Information Engineering, Domain Engineering and Application
Engineering) result in engineering process stovepipes. Each engineering level develops models representing
the associated requirements. Each engineering practice designs a solution (sometimes captured by an
architecture or design). And each engineering practice then implements/develops their products. The
challenge is to fuse these engineering methods (and thereby their work products) to eliminate redundancies,
inconsistencies and other anomalies. The goa is to define and implement a disciplined software
engineering practice that assures that the work products and standards produced any phase of the lifecycle
are consistent and coordinated with the work products and standards of all associated lifecycle phases. For
example, data models developed during the enterprise modeling phases must feed into the appropriate
domain engineering and application engineering phases; and reciprocaly, provide feedback to the
enterprise efforts when the data models need to be modified or extended. Applications developed
individually without considering common and/or related systems in the domain result in stovepipe systems/

applications. Likewise, domains engineered without considering the broader enterprise (e.g., common data
elements, business functions, the need to interoperate, etc.), can result in stovepipe domains.

Mature engineering disciplines support clear separation of routine problem solving from R&D. These
disciplines have publicly-held, experience based, and formally transmitted technology bases that include
product models (e.g., designs, specifications, performance ranges) and practice models (tools and
techniques to apply to the product models) (See Figure 1 below). Furthermore, the qualities of products
built from these models are well-understood and predictable before the products are produced.

Maturing of the Software
Engineering Discipline

New ™S, _____________ - Engineered
Development experience Products
A8 in product

N use ‘r

technology o

insertion So

experience in
enginéer\ing practice

production
engineering

Product Line Asset Base

*« Models (requirements,
architecture, design, ...)

+ Plans (development, test, ...)

+ Software (developed, COTS,
GOTs, ..)

Routine Design
and Engineering

Figure1l TheMaturing of the Software Engineering Discipline

The state-of-the-practice of software engineering is not yet at this level of maturity. Instead of basing new
development on a technology base of well-understood models, current software engineering practice tends
to start each new application development from scratch with the specification of requirements, and moves
directly into the design and implementation. By contrast, this effort's vision of a mature software
engineering discipline, asillustrated in the figure above, relies on a technology base of reusable assets and
clearly separates routine systems development (i.e., application engineering) from development of the
domain-specific technology base (i.e.,, domain engineering). This separation highlights the need and
significance of developing reusable corporate assets including requirements, models, architectures,
processes, and components. The application engineering function can then focus on validating and using
this technology base, instead of beginning with a blank sheet. In addition to creating the initial set of
domain assets, domain engineering processes will continue to add and enhance the technology base
according to the requirements associated with application engineering.

Under the USAF Comprehensive Approach to Reusable Defense Software (CARDS) Partnerships Program
[20], LM developed and applied, the AF/CARDS Engineered Software (ACES) methodology [21,22,23]
(illustrated below), an approach that combines Information Engineering with Domain Engineering and the
Object Modeling Technique (OMT). The CARDS Tri-Lifecycle Software Engineering model [1,2,27]
(Figure 2 below), reflects three types of engineering activities during the acquisition and life cycle
development and maintenance of software intensive systems. Enterprise Engineering [2,3,26], Domain
Engineering [23,24.25], and Application Engineering [1,5,7,8,17]. Due to the complexity of engineering all
of the systems within the enterprise, as well as the numerous methodologies available for each engineering
areg, it islikely that information will be lost, regenerated, or not seen as relevant to previous or succeeding
activities -- thereby causing redundant work efforts, data and function anomalies, and higher development
and maintenance costs. This lack of coordination and communication across processes has been coined

"stovepipe processes' and is analogous to the systems stovepipes dilemma, where systems fail to leverage
common data and the necessary interoperability. Approaching the problem with planning oversight of all
three activities ensures that information flows from one activity to the next.

Tri-Lifecycle Engineering Model

Operational
Planning
T T
Gn!erp‘?ise Architecture Plﬁning)

Domain /Product Line Engineering |
L 1 I 1 I U
(AssetManagement j

BN
e

+
T T
T I I "
r v r v
System System
Requirements System Design

4

Application Engineering

Figure2 The CARDS Tri-Lifecycle Engineering M odel

There are numerous Domain Engineering methods and processes. The primary domain analysis methods
(primary because of their validation/applications on various efforts and associated publications) include:
Organization Domain Modeling (ODM) [18], a well defined and comprehensive method; Domain
Engineering Process (DEP) [27], an extension of object-oriented methods; the SEI Feature Oriented
Domain Analysis (FODA) [2] method, considered to be the most mature DE methodology; and SPC's
Synthesis[19].

3.0 ARCHITECTURE GUIDANCE U.S. Government guidance and policy such as the Command
Control Communications Computers Intelligence Surveillance and Reconnaissance (C41SR) Architecture
Framework, Joint Technical Architecture (JTA), Defense Information Infrastructure (DIlI) Common
Operating Environment (COE) and other US DoD architectural guidance are crucial to achieving
interoperability, while building systems faster, better and cheaper.

The JTA [30] is the DoD’s specification for interoperability between all DoD systems. Figure 3 below
illustrates the relationship of the JTA to other DoD architecture guidance and initiatives. The JTA is based
on the Technical Architecture Framework for Information Management (TAFIM), Adopted Information
Technology Standards (AITS) — Volume 7 of the TAFIM [12]; and uses the DoD Technical Reference
Model (TRM, TAFIM Vol 2) asit’s structure for specifying interoperability for each major service area.
The JTA defines the service areas, interfaces, and standards (JTA elements) applicable to all DoD systems,
and its adoption is mandated for the management, development, and acquisition of new or improved
systems throughout DoD. The JTA is complementary to and consistent with other DoD programs and
initiatives aimed at the development and acquisition of effective, interoperable information systems --
including the DoD’ s Specification and Standards Reform, the Information Technology Management Reform
Act (ITMRA); DoD C4ISR Architecture Framework, the DoD TRM; the Defense Information
Infrastructure Common Operating Environment (DIl COE); and Open Systems Initiative.

\TION g
LR

DOD Architecture Efforts a

=}

@

ok

ongs

C4I SR Integration Task Force
(Integrated Architecture Panel)

Technical Architecture Framework for
Information Management (TAFIM)

¢ Addressing operational, systems, and
technical architecture processes and
structure

* TheJTA will continueto usethe C41SR

Ar chitecture Framework.

« Establishes DOD framewor k/processes
for defining technical architecture

* Not a specific technical architecture

e TheJTA supersedesTAFIM
Volume7 for C4l systems

JTA

Establishes a technical architecture
for C4l interoper ability

Common Oper ating Environment(s)

Common Support Applications * Instantiation of C4l Technical Architecture
Infrastructure Services focused on (but not limited to) Information
Processing

KERNEL Operating System

¢ TheJTA mandatesthe use of the COE

Databases
JTAV2D2eppt 19980209

Figure3 DoD Architecture Guidance

The DoD TRM originated from the TAFIM and was developed to show which interfaces and content
needed to be identified. The TRM Working Group (TRMWG) has extended the scope of the TRM to
include real-time systems (e.g., weapon systems) and is coordinated with the JTA. Asfigure 3 indicates, the
JTA isaso very closely coupled with the DIl COE [32] and the C4ISR Architecture Framework [31]. The
DIl COE isthe DoD’s implementation of a technical architecture supporting interoperability, supplemented
by various common services/ utilities to maximize reuse across multiple systems. And as the figure below
indicates, the JTA is one of the three architectures defined by the C4ISR Architecture Framework.

C4IS R Arcnitectural Framework

O perational

5 V_iew
o
\,9 . Identifies W arfighter Relationships
Q\‘Z.\&\ e(\\ N and Inform ation Needs
A N
> ® o}Q e\ > 7/,
& &8 R » 2 %
OO | NN
%a\(\ O el @ & (//,/') 2
A S, 70 s
RSO O s, RN
QYT 2 O (A RN
¢ X & v V. % Yo e S+
VoE A8 o P ¢ Ty
2RI
|I‘| %\\ 06 e'b
RN
‘I N Specific Capabilitiesldentified to 2
Satisfy Inform ation-Exchange
System s Levelsand Other Operational
\Vj ieW Requirements
Technical Criteria Governing Pr < i St T d
Relates Capabilitiesand Characteristics !nteroperable Implementation/ reseriy ey anecares
to Operational Requirements 4 rocurement of the Selected and Conventions
iystem C apabilities

Figure4 DoD C4ISR Architecture Framework

4.0 LESSONSLEARNED Lockheed Martin (LM) worked with the USAF to replace existing
transportation information systems. These systems were designed as stand-alone applications serving
individual offices or functions. The resulting system gaps and overlaps, and the concomitant data and
process redundancy and inconsistency, have caused problems for both information users and systems
maintainers. USAF s goad is to reduce development and maintenance costs while enhancing support to the
warfighter. Its objectives are to develop a unified transportation system and environment -- consisting of a
corporate database, corporate applications, common functionality, and a corporate network. The strategy for
reaching these objectivesis to introduce a reuse-based approach to application systems development. The
approach is to replace stovepipe information systems with a set of integrated applications that cut across
organizational and functional lines and to implement a virtual corporate database. The corporate database
will appear to the user to be integrated and monolithic but will actually be composed of physically
distributed, heterogeneous databases and - for the foreseeable future - legacy USAF and DoD systems.

The USAF employed the Zachman Framework to guide its Information Systems Architecture development.
Within this framework, USAF addressed its enterprise-wide data integration objectives by applying Steven
Spewak’ s Enterprise Architecture Planning (EAP) process (an Information Engineering (IE) technique).
The product, a high-level Transportation System Master Plan, includes a Mission Analysis, Information
Architecture, Application Architecture, and Implementation Plan.

ACES was based on the CARDS Tri-Lifecycle Engineering Model, which extended the DARPA Software
Technology for Adaptable, Reliable Systems (STARS) Dual Lifecycle Model (i.e., Domain Engineering) to
include Information/Enterprise Engineering. The complete ACES methodology addresses Enterprise
Engineering (e.g., Spewak’s EAP) [3], Object-Oriented (OO) Domain Engineering, and OO Applications
Engineering (using Rumbaugh’s OMT) [1]. The transition from Enterprise Engineering to Domain
Engineering uses | E-based affinity analysis between data entities and business processes to identify and
scope candidate domains. It then uses an OO approach to analyze inter-domain relationships in terms of
service requests. Within each domain of focus, ACES uses FODA to identify and categorize reuse
opportunities, and OMT to devel op reusabl e business objects that satisfy semantic information integration
and synthesis requirements. Application Engineering consists of matching specific user requirementsto
business objects and developing the necessary application-specific objects.

There were many lessons learned throughout this effort. Transitioning from the very functional (sometimes
referred to as “ structured”) information/enterprise engineering methods to an OO solution incurred several
challenges. Applying affinity analyses and multi-domain modeling techniques over the enterprise
information element lifecycles to scope the domains and hence group the service objects proved to be key in
thistransition. The fundamental differences between structured and OO approaches must be considered in
the many tranglations and transitions across the various methods and workproducts within the Tri-Lifecycle.
The Data Access Layer within the framework in Figure 4 below was necessary to deconflict data access
between the structured legacy code and the new OO code. The figure below summarizes the integration and
application of DoD architectural guidance / products with the associated architecture technology. Lessons
learned will be discussed during the panel session. Additional lessons learned in applying the ACES
methodology, based on the CARDS Tri-Lifecycle Engineering Model above are discussed in the references
listed below. The figure below illustrates the integration of both, the technology (e.g., EAP, ACES, OMT)
and the DoD guidance/products (e.g., C41SR Architecture Framework, JTA and COE) used to reengineer
the USAF s Defense Transportation System.

*‘Mrovr e /\ a rr
Compleie £ cillre
Enterprise [ETENE
Architecture
O 0 Planning TSN < N
O compeaing S
V4 . of
O ‘6 S NTETETTY)
Multi-Domain
Model
Operational Processing and_lnformation HHHHHH} | Technical |
Exchange Requirements
Defi A . Defines the Set of Rules
efines Actlvmes and New Technological that Govern Systems
ACES
Architecture
Framework Processing and

G .
Information ‘ ’ Tlme-F_’hased
Exchange ée(_:l;mcal
Requirements Systems uidance
2y

Enables or Automates Operational Activities
through Physical Processes

53 eS|

AERARNe

Passenger
and Patient
Processing

s)
O O[] [] «>EEEE

Figure5 ACES'Integration of Architecture Guidance, Policy & Technology

5.0 ACKNOWLEDGMENTS Specia thanks and credit are due to the teams that worked with me on
the development and application of these technologies, as well as the team supporting the development of
the DoD JTA (2.0). Theseinclude Jim Fulton, Mike Webb, Robin Burdick, Frank Svoboda, Roger
Whitehead, David Weisman, Lucy Haddad, Nancy Solderitsch, Paul Kogut, Wil Berrios, Russ Richards,
OlimpiaVelez, Jm DeGoey, Mark Dowson and many others.

6.0 REFERENCES

1. J Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen. Object-Oriented Modeling and Design,
Prentice-Hall, 1991.

2. K.Kang, S. Cohen, J. Hess, W. Novak, and S. Peterson. Feature-Oriented Domain Analysis (FODA) Feasibility
Study, CMU/SEI-90-TR-21, Carnegie-Mellon University, Software Engineering Institute, November 1990.

3. S Spewak. Enterprise Architecture Planning, John Wiley & Sons, 1992

4. J. Zachman. “A Framework for Information Systems Architecture,” IBM Systems Journal, Vol. 26, No. 3, 1987.

5. W. Royce, “Managing the Development of Large Software Systems: Concepts & Techniques’ 1970

6. OUSD/AT “Defense Report of the Defense Science Board Task Force on Military Software,” 1987

7. B.Boehm, “A Spiral Model of Software Development an Enhancement,” 1988.

8. W. Royce, “TRW’s Ada Process Model for Incremental Development of Large Software Systems,” 1990.

9. MIL-STD-498 “ Software Devel opment and Documentation” 1994

10. EIA/IEEE J-STD-016 “ Software Life-Cycle Processes’” 1995

11. ISO/IEC STD 12207 “IT — Software Life-Cycle Processes’ 1995

12. DoD, “Technical Architecture Framework for Information Management (TAFIM)” Version 2.0, Defense
Information Systems Agency, Center for Architecture, June 1994

13. The DoD Enterprise Model, Volume |: Strategic Activity and Data Models, Office of the Secretary of Defense,
ASD (C3l), January 1994.

14.
15.
16.
17.

18.

19.

21

24.

25.

26.
27.
28.

29.
30.
31
32.

The DoD Enterprise Model, Volume I1: Using the DoD Enterprise Model, A Strategic View of Changein DaoD, A
White Paper, Office of the Secretary of Defense, ASD (C3l), January 1994.

Information Management Program, DoD Directive 8000.1, October 1992.

DoD Data Administration, DoD Directive 8320.1, September 1991.

IEEE Standard for Developing Software Life Cycle Processes, IEEE Computer Society, IEEE STD 1074-1991,
January 1992.

Simos, M., “ARPA STARS Organization Domain Modeling (ODM) Guidebook Version 1.0 March 1995
“Synthesis, A Reuse-Based Software Development Methodology, Process Guide, Version 1.0, Software
Productivity Consortium, October 1992.

Maymir-Ducharme, FA., Weaaman, D. "A.F/CARDS Technology Trandtion Program: Reuse Partnerships” procesdings of the
Reuse’ 95 Workshop, August 1995.

Maymir-Duchame, FA., "Vaiant Doman Enginesing Approaches proceedings of the Workshop on Inditutiondizing
Software Reuse WISR' 95, July 1995.

Maymir-Ducharme, F.A., Svoboda, F. "Trandaing Enterprise Modds into Domain Engineering Workproducts," Proceedings of
the Reuse’ 96 Workshop, August 1996.

Maymir-Ducharme, FA., (WG Chair). "Opportunigtic, Sysematic and Optimized Domain Engineering Approaches’ Proceadings
of theReuse’ 96 Workshop, August 1996.

Maymir-Ducharme, FA., “Product Lines Jus One of Many Domain Enginearing Approaches” Proceadings of the NASA
Software Reuse Workshop, sponsored by GMU and NASA SORT Program, October 1997,

Maymir-Ducharme, F.A., “A Product LineBusnessModd,” Proceadings of ARES 96 (Architecturd Reasoning for Embedded
Software), ponsored by ESPRIT IV project no. 20477, LasNavas, Spain, 18-20 Nov. 1996.

Martin, James, “Information Engineering : A Trilogy,” Prentice Hall, Inc., Englewood Cliffs, NJ1989.

Defense Information Systems Agency (DISA), “ Domain Enginearing Process (Verson 2)” 28 April 1995.

Combined Communications Electronics Board (CCEB), “ Combined I nteroperability Technicd Architecture (CITA) Rationdeand
Development Framework (Ver. 0.2) March, 1998.

CCEB, “Combined Interoperability Technicd Architecture (CITA), Ver. 0.1,” March 1998.

DISA, “DOD Joint Technicd Architecture (JTA),” http:/Aww-jtaits.disamil/

OSD/C3| “CAI SR Architecture Framework,” http:/Awww.cisa.osd mil/organization/architectures

DISA, “Defense Informetion Infragtructure (DI1) Common Operating Environment (COE),” http://spider.odfl.disamil/dii/

Session 3: Inspections

National Software Quality Experiment: A Lesson in Measurement: 1992 - 1997
D. O'Neill, Independent Consultant

Principles of Successful Software Inspections
D. Beeson, Ki Solutions Consulting, and T. Olson, World-Class Quality

Capture-Recapture - Models, Methods, and the Reality
J. Ekros and A. Subotic, Linkoeping University

NATIONAL SOFTWARE QUALITY EXPERIMENT
A LESSON IN MEASUREMENT
1992-1997

KEY WORDS

Analysis Bins

Common problems

Core samples

Defect types

Experiment participants
Software Inspection Lab
Software process maturity level
Standard of excellence

Return on investment

PROLOGUE

The nation's prosperity is dependent on software. The nation's software industry is slipping, and
it is slipping behind other countries. The National Software Quality Experiment is riveting
attention on software product quality and revealing the patterns of neglect in the nation's software
infrastructure.

ABSTRACT

In 1992 the DOD Software Technology Strategy set the objective to reduce software problem rates
by a factor of ten by the year 2000. The National Software Quality Experiment is being
conducted! to benchmark the state of software product quality and to measure progress towards
the national objective.

The National Software Quality Experiment is a mechanism for obtaining core samples of software
product quality. A micro-level national database of product quality is being populated by a
continuous stream of samples from industry, government, and military services. This national
database provides the means to benchmark and measure progress towards the national software
quality objective and contains data from 1992 through 1997.

The centerpiece of the experiment is the Software Inspection Lab where data collection procedures,
product checklists, and participant behaviors are packaged for operational project use. The
uniform application of the experiment and the collection of consistent measurements are guaranteed
through rigorous training of each participant. Thousands of participants from dozens of
organizations are populating the experiment database with thousands of defects of all types along
with pertinent information needed to pinpoint their root causes.

To fully understand the findings of the National Software Quality Experiment, the measurements
taken in the lab and the derived metrics are organized along several dimensions including year,
software process maturity level, organization type, product type, programming language, and
industry type. These dimensions provide a framework for populating an interesting set of analysis
bins with appropriate core samples of software product quality.

1 The National Software Quality Experiment is an entrepreneurial activity.

@Copyright Don O'Neill, 1998 2 Software Engineering Workshop

EXPERIMENT MOTIVATION AND ORGANIZATION

Overview

Participants are attracted to the experiment as a place where they can calibrate their software quality
against appropriately selected industry core samples. Here they can jump-start the organization's
quality measurement program on the shoulders of uniform Software Inspection Lab procedures.
These procedures are operationally packaged for project use and include well defined processes,
industrial strength product checklists, participant roles and behaviors, and standard forms and
reports.

The National Software Quality Experiment provides the framework to pose important quality
questions. Its micro-level national quality database provides the measurements to answer them.
Similarly, the extent of certain common risks can be quantified. As a participant in the experiment,
an organization can characterize the effectiveness of its software quality process. At the industry
level, progress towards the national software quality objective can be can be benchmarked.

Participants in the experiment benefit in several ways. They are able to characterize the maturity of
their software quality process. With this understanding, they are able to establish goals for
improving the process and to set priorities for immediate action. Beyond that, these organizations
are able to promote a vision for excellence in their software products and to calibrate their progress
towards the national software quality goal.

Motivation
The Department of Defense Software Technology Strategy was drafted for the Director of Defense
Research and Engineering in December 1991 [DOD STS 91]. Three important national objectives
were established to be achieved by the year 2000:

1. Reduce equivalent software life-cycle costs by a factor of two

2. Reduce software problem rates by a factor of ten

3. Achieve new levels of mission capability and interoperability via software

Every software organization should treat the national objective to improve software product quality
by a factor of ten as a wake-up call. Are organizations planning to reduce software problem rates
by a factor of ten? Do they know what these rates are now?

Measurement Best Practice
Although measurement is needed to derive effective policy governing acquisition, development,
and operations, there is not yet an industry consensus on the wisdom of creating a national
database for software engineering. The issue centers on the use of the data, not on its collection.
The worry is that the industry is not ready to use the database appropriately. Clearly the industry
can learn to use the database appropriately once it exists. If there are national goals set for
software engineering, there must also be a national measurement program and database to track
progress and refine goals. Camegie Mellon University's Software Engineering Institute produced
"A Concept Study for a National Software Engineering Database" in July 1992 [Van Verth 92].
The study points out that there are many users for such a database, but few suppliers. The study
offers the following observations and advice on establishing a national database:

1. Wide variance may exist in the collection process

2. Common data definitions are needed

3. Goals and questions should precede data collection

4. Confidentiality of the data must be protected

@Copyright Don O'Neill, 1998 3 Software Engineering Workshop

In designing the experiment, it is recognized that the prescription for achieving lasting value in
measurement depends on the successful integration of measurement concepts, operationally
defined and packaged processes, effective technology transition including the training of
participants and the dissemination of results, and hands-on oversight of the experiment. The
prescription for lasting value in measurement revolves around four driving measurement concepts.
First, measurement must be aligned with business needs. Second, metrics must be carefully
pinpointed and rigorously defined. Third, measurement activities must be built into the normal
operation of the organization. Finally, extraordinary steps must be applied to obtain consistency
and uniformity in data collection.

Finally, Dr. Vic Basili of the University Maryland provides the following additional guidelines
[Wallace 97]:

1. Establish the goals of the data collection

2. Develop a list of questions of interest

3. Establish data categories

4. Design and test the data collection form

5. Analyze data

Nature and Role of Experiment
In the practice of software engineering, managers are guided more by myth than by measurement.
The experiment provides the framework for measuring critical aspects of software product quality
practice. The framework supplies the ingredients needed to install a uniform and consistent
measurement methodology. These are described in the Software Inspections Mechanism. The
predictability of the measurements taken in conducting the experiment provides the basis for
assessing the validity of a hypothesis. This is discussed in Experiment Results. Some of the
questions asked and answered in the experiment are:

1. To what extent is there a continuing stream of requirements changes?

2. What are the leading types of errors?

3. Are errors traced to people or process?

4. Is a standard development process followed?

5. To what extent are wrong software functions being developed?

6. To what extent are there shortfalls in real time performance?

7. Is gold plating a problem?

Software inspections are an essential ingredient in fact-based software management. They utilize a
reasoning process for conducting a fine-grained, deep-probing evaluation. When combined with
automation-based quick-look evaluations, the best balance between efficiency and insight can be
obtained. Once installed in the organization, the software inspection process yields core samples
of software product quality. These can be used to benchmark problem rates by defect type among
major product areas within the organization. With the benchmark measurements in place, the
software inspections process provides a stable, uniform, and persistent mechanism for measuring
improvement progress toward the software product goals of the organization.

SOFTWARE INSPECTIONS MECHANISM

Setting the Standard of Excellence

Software products reveal the standard of excellence in software engineering applied in their
production. In improving software product quality, an industrial strength standard of excellence
must be set, and the software operations within the organization must be disciplined to meet that
standard. This is done by measuring actual practice using the strongly preferred indicators from the
national standard of excellence spanning completeness, correctness, style, rules of construction,
and multiple views.

@ Copyright Don O'Neill, 1998 4 Software Engineering Workshop

Completeness

Completeness is based on traceability among the requirements, specification, design, code, and
test artifacts. Completeness analysis reveals what predecessor artifact sections have not been
satisfied as well as the inclusion of extra fragments.

Correctness

Correctness is based on reasoning about programs through the use of informal verification and
correctness questions derived from the prime constructs of structured programming and their
composite use in proper programs. Input domain and output range are analyzed for all legal values
and all possible values. Adherence to project specific disciplined data structures is analyzed.

Style

Style is based on project specified style guidance based on block structured templates. Semantics
of the design and code are analyzed for correspondence to the semantics used in the requirements,
specifications, and design. Naming conventions are checked for consistency of use; and
commentary, alignment, upper/lower case, and highlighting use are checked.

Rules of Construction

Rules of construction are based on the software architecture and its specific protocols, templates,
and conventions used to carry it out. For example, these include interprocess communication
protocols, tasking and concurrent operations, program unit construction, and data representation.

Multiple views

Multiple views are based on the various perspectives required to be reflected in the product.
During execution many factors must operate as intended including initialization, timing of
processes, memory use, input and output, and finite word effects. In generating the software,
packaging considerations must be coordinated including program unit construction, program
generation process, and target operations. Product construction disciplines of systematic design
and structured programming must be followed as well as interfaces with the user, operating
system, and physical hardware.

EXPERIMENT RESULTS

Experiment Participants

The participants of the National Software Quality Experiment have been trained in the Software
Inspections Course and Lab. Experiment results are drawn from these Inspection Lab sessions.
The participating organizations span government, DOD industry, and commercial sectors and
represent a wide range of application domains.

» Electronic warfare
e FAA communications

e Accounting, personnel, administration
* Administrative and management

decision support

e Aircraft jet engine diagnostics,
logistics, and maintenance

* Artillery fire control system

* Avionics flight on-board control

¢ Control devices for avionics
applications

¢ Credit card application

* Department of State embassy support

¢ Electronic commerce

@Copyright Don O'Neill, 1998

* Factory line support

e Financial services

* Global positioning system user sets
¢ Insurance and medical information
¢ International banking

* Joint Chiefs of Staff support

¢ Medical information system

* Naval surface weapons system

* Pre and post flight space application
* Telecommunications

Software Engineering Workshop

Results Summary

Ralph Waldo Emerson said, "The years teach us things the days never knew". The National
Software Quality Experiment has been accumulating a steady stream of core samples for its
micro-level national database. These results provide a benchmark of software product quality
measurements useful in assessing progress towards the national software quality objective for the
year 2000. These results are highlighted below in the discussion of the common problems
pinpointed, defect category and severity data summary, Inspection Lab operations, the
predictability of certain measurements, and the ranking of defect types.

Common Problems
Analysis of the issues raised in the experiment to date has revealed common problems that reoccur
from session to session. Typical organizations which desire to reduce their software problem rates
should focus on preventing the following types of defects:
1. Software product source code components are not traced to requirements.
* As a result, the software product is not under intellectual control, verification procedures
are imprecise, and changes cannot be managed.
2. Software engineering practices for systematic design and structured programming are applied
without sufficient rigor and discipline.
* As a result, high defect rates are experienced in logic, data, interfaces, and functionality.
3. Software product designs and source code are recorded in an ad hoc style.
* As a result, the understandability, adaptability, and maintainability of the software
product are directly impacted.
4. The rules of construction for the application domain are not clearly stated, understood, and
applied.
* As a result, common patterns and templates are not exploited in preparation for later
reuse.

Defect Category and Severity
The defect severity metric revealed that 14.27% of all defects were major, and 85.73% minor.
Defect category distinguishes missing, wrong, and extra. For major defects, 7.44% were missing,
5.95% wrong, and .88% extra. -
For minor defects, 49.76% were Defect Severity and Category Summary

missing, 27.63% wrong, and
8.32% extra. Missing Wrong Extra Total

Inspection Lab Operations Major 744 595 88 14.27

Through 1997 there have been 112
Inspection Labs in which 2317
participants were trained and Total 57.20 33.60 9.20 100.00
conducted inspection sessions. A
total of 788,459 source lines of code have received strict and close examination using the
packaged procedures of the lab. There have been 142,306 minutes of preparation effort and 52,196
minutes of conduct time expended to detect 11,375 defects.

Minor 49.76 27.63 8.32 85.73

Of these 11,375 defects, 1854 were classified as major, and 9521 as minor. A major defect effects
execution; a minor defect does not. It required 12.51 minutes of preparation effort on the average
to detect a defect. To detect a major defect required 76.76 minutes of preparation effort on the
average. On the average, .906 thousand source lines of code were examined each inspection
conduct hour. There were 2.35 major defects detected in each thousand lines, and 12.08 minor
defects. There were 4.91 defects detected per session with a return on investment of 4.48.

@Copyright Don O'Neill, 1998 6 Software Engineering Workshop

Sessions

2317

Metrics:
1.

Noohkwh

INSPECTION LAB OPERATIONS

Prep Conduct Major Minor
Effort Time Defects Defects
142,306 52,196 1854 9521
12.51 minutes of preparation effort per defect
76.76 minutes of preparation effort per major defect
2.35 major defects per KSLOC

12.08 minor defects per KSLOC

906 lines per conduct hour

4.91 Defects per session

448 Return on Investment

Size in
Lines

788,459

Questions Answered in the Lab

The micro-level national database on software product quality can be used to answer important
software engineering questions. When appropriately selected core samples are accumulated in the
Report Summary Form and the probability of occurrence is computed for each defect type, defect
severity, and defect category, these probabilities can be used to construct answers to questions.
Five of Boehm's top ten risks are answered below using the 1992-1997 data from the experiment:

Defect Type Ranking
The foremost defect types that accounted for 90% of all defects detected are:

Documentation
Standards
Functionality
Logic

Data
Maintainability

Syntax

40.86% error in guidance documentation

20.39% error in compliance with product standards

7.95% error in stating or meeting intended

7.86% error revealed through informal correctness questions
function

5.36% error in data definition, initial value setting, or use

4.73% error in good practice impacting the supportability
and evolution of the software product

4.02% error in language defined syntax compliance

50.00 -

40.00 -

30.00 -

"3007070

@ Copyright Don O'Neill,

1992-1997

i
[
i
m
E3
]

]

-,

Percent of Defect Types

Interface

Data

Logic

/70

Performance
Functionality
Human Resocurces
Standards
Documentation

Syntax

Test Environment
m Test Coverage

Maintainability
Other

1998

Software Engineering Workshop

To what extent were the wrong software functions being developed?
Functionality errors accounted for 7.95% of all errors.
To what extent were the wrong user interfaces developed?
Interface errors accounted for 1.05% of all errors.
Human Factors accounted for 1.79% of all errors.
To what extent was there gold plating?
9.20% of all errors were classified as extra.
To what extent was there a continuing stream of requirements changes?
Documentation errors accounted for 40.86% of all errors.
To what extent was there a shortfall in real time performance?
Performance errors accounted for 2.39% of all errors.

Questions Not Yet Answered

It is useful to keep in mind that defects detected do not equal defects inserted. Defects may go
undetected and leak into downstream activities. Consequently there is interest in defect leakage and
ways to measure and reason about it. The Software Inspection Lab includes a mechanism to
collect data on defect leakage and to reason about the results. This reasoning process crosses over
into defect prevention.

Defect leakage was introduced into the National Software Quality Experiment in 1995, and the data
on this is starting to build up. The defect leakage data needs to populate each analysis bin in
sufficient quantity before these results are usable. With this data it will be possible to conduct
special studies on defect leakage to augment the core analyses done continuously.

Questions asked but not yet answered include:
1. To what extent is defect leakage occurring?
2. What is the frequency distribution of defect types that leak?

The mechanism used to gather defect leakage involves identifying the life cycle activity for each
software inspection and the defect origin for each defect. Each software inspection is considered an
exit criteria for a software product engineering activity. Each defect is characterized by category,
severity, type, ... and defect origin. Defect origin is the software product engineering activity
where the defect was inserted. Where defect origin does not match the software product
engineering activity for which this inspection serves as an exit criteria, defect leakage has
occurred.

Measurement Results By Analysis Bin

The findings of the National Software Quality Experiment are organized along several dimensions
which provide a framework for populating an interesting set of analysis bins with appropriate core
samples of software product quality. The analysis bins are used to organize the findings into
collections of data that reveal distinctions and may suggest interesting trends.The types of bins
selected are year, software process maturity (level 1,2,3), organization type (commercial, DOD
industry, government), product type (embedded, organic), programming language (modern, old
style), and industry type (defense, financial, manufacturing, medical, telecommunication,
transportation). As data for each year is collected, the overall results become more interesting, and
the population of analysis bins becomes more robust.

Return On Investment

Managers are interested in knowing the return on investment to be derived from software process
improvement actions. The Software Inspections Process gathers the data needed to determine this.

@Copyright Don O'Neill, 1998 8 Software Engineering Workshop

The defined measurements collected in the Software Inspections Lab may be combined in complex
ways to form this derived metric. The Return on Investment for Software Inspections is defined
as:
Savings/Cost , where:
Savings=(Major Defects * 9) + Minor Defects
Cost= (Minutes of Preparation Effort + (Minutes of Conduct Time * 4))/60

This model for Return on Investment bases the savings on the cost avoidance associated with
detecting and correcting defects T - =
earlier rather than later in the{
product evolution cycle. A Major
Defect that leaks into later phases |
may cost ten hours to detect and
correct. Ten hours to fix later minus | 14
one hour to fix now results in the
constant nine (9) applied to Major
Defects. A Minor Defect may cost
two hours to fix later minus one |
hour to fix now resulting in a!
constant of one (1) applied to Minor
Defects. To convert the Minutes of
Conduct Time to effort, the average
number of participants (4) is
applied. The constant 60 minutes is
applied to convert minutes to hours. National Sofawvare Quality Experiment

IReturn on Investment |

The graph showing the Return on
Investment for each organization participating in the National Software Quality Experiment
suggests that the Return on Investment for software inspections ranges from 4:1 to 8:1. For every
dollar spent on software inspections, the organization can expect to avoid 4-8 dollars on higher
cost rework.

CONCLUSION

Closing Observations

In closing it needs to be stated that the data does not suggest progress towards the Y ear 2000 goal
to reduce software problems by a factor of ten. Hunting for defects in software is a target rich
opportunity. The harder the project looks for errors, the more it finds. The way to look harder is
to reduce the volume of product inspected in each session.

The data suggests that increased software process maturity results in increased defect detection,
with the result perhaps being lower defect leakage into the field. At level 1 the project lacks a
shared vision for a standard of excellence for software engineering products. At level 2 attention is
paid to establishing a standard of expectation, a standard of excellence, and so more defects are
identified. At level 3 the standard is set and the well defined, fined grained processes for software
product engineering are in place and in practice with software inspections operating as the exit
criteria for each activity of the life cycle.

The data also suggests that defect density decreases with program size. As stated earlier, all
programs contain a beginning, an end, and a context for operation within the larger system.
Starting, finishing, and fitting in are all more error prone than the body of the program which gives
it size.

@Copyright Don O'Neill, 1998 9 Software Engineering Workshop

In addition the data suggests that the organization's neglect of its software process exceeds the
poor workmanship of individual programmers as the source of errors. Documentation and
standards defect types account for nearly two-thirds of all defects, and these are the responsibility
of the organization and its process.

Software products are not well connected to the requirements or business case that inspired their
creation. Much of the documentation type defect detection results from the lack of traceability from
the code to the design to the specification to the requirements.

Field Measurement Lessons
In conducting the National Software Quality Experiment, valuable lessons in field measurement are
being learned. These lessons are forming the prescription for obtaining lasting value in
measurement:
1. Measurement must be aligned with business and performance needs. These activities
must be built into the normal operation of the organization. To do this, the goals to be met
and questions to be answered in management, engineering, and operations must precede
the collection of data.
2. Metrics must be carefully pinpointed and rigorously defined. Extraordinary steps must
be applied to obtain consistency and uniformity. Without a well defined process for data
collection and analysis, the variance in the measurement process itself impacts the accuracy
of results.
3. Attention must be paid to the confidentiality of results. The opportunity for improvement
is increased when the measured results are made more widely available. However,
individuals and groups naturally resist having their shortcomings made public. If ignored,
this resistance will defeat the measurement program. The organization must strike a balance
between public and private data.

Next Steps

The National Software Quality Experiment is a demonstrated mechanism for collecting uniform and
consistent measurements of software product quality. It provides the vantage point for software
product quality and the field experience in measurement needed to jump start the practice of fact-
based software management.

As the centerpiece of the experiment, the Software Inspection Labs have been installed in
software factories around the country. The National Experiment collects, organizes, and packages
core samples of software product quality. These measurements are increasing the understanding of
the state of the practice and how to measure it.

The usefulness and success of the National Software Quality Experiment depends on sustaining a

continuous stream of core samples. Organizations from industry, government, and the military are
invited to participate and enrich this national database resource.

@Copyright Don O'Neill, 1998 10 Software Engineering Workshop

BIBLIOGRAPHY

[DOD STS 91]

[Ebenau 94]
[Fagan 76]
[Florac 92]
[Freedman 90]

[Gilb 93]
[Linger 79]
[Humphrey 89]
[O'Neill 88]
[O'Neill 89]
[O'Neill 92]
[O'Neill 94]
[O'Neill 95,96]
[O'Neill 97]
[O'Neill 97]

[O'Neill 97]

[O'Neill 98]

[Paulk 95]
[Van Verth 92]
[Wallace 97]

@Copyright Don O'Neill, 1998 11

Department of Defense Software Technology Strategy, draft prepared for
the Director of Defense Research and Engineering [DDR&E], December
1991

Ebenau, Robert G. and Susan H. Strauss, "Software Inspection Process",
McGraw-Hill, Inc., 1994

Fagan, M., "Design and Code Inspections to Reduce Errors in Program
Development", IBM Systems Journal, 15, 3, 1976, 182-211

Florac, William B., "Software Quality Measurement: A Framework for
Counting Problems and Defects", CMU/SEI-92-TR-22, September 1992
Freedman, D.P., G.M. Weinberg, "Handbook of Walkthroughs,
Inspections, and Technical Reviews", Dorset House Publishing Co., Inc.,
1990

Gilb, Tom and Dorothy Graham, “Software Inspection”, Addison Wesley
Longman Limited, 1993

Linger, R.C., H.D. Mills, B.I. Witt, "Structured Programming: Theory
and Practice", Addison-Wesley Publishing Company, Inc., 1979
Humphrey, Watts S., "Managing the Software Process", Addison-Wesley
Publishing Company, Inc., 1989

O'Neill, Don and Albert L. Ingram, "Software Inspections Tutorial",
Software Engineering Institute Technical Review 1988

O'Neill, Don, "Software Inspections Course and Lab", Training Offering
for Practitioners, Software Engineering Institute, 1989

O'Neill, Don, "Software Inspections: More Than a Hunt for Errors",
CrossTalk, Issue 30, January 1992

O'Neill, Don, "National Software Quality Experiment", International
Conference on Software Quality, Washington DC, 1994

O'Neill, Don, "National Software Quality Experiment: Results 1992-1995",
Software Technology Conference, Salt lake City, 1995 and 1996

O'Neill, Don, "Issues in Software Inspection”, IEEE Software, Vol .14
No 1., January 1997

O'Neill, Don, “Setting Up a Software Inspection Program”, CrossTalk,
The Journal of Defense Software Engineering, Vol. 10 No. 2, February
1997

O'Neill, Don, "National Software Quality Experiment: A Lesson in
Measurement 1992-1996", Quality Week Conference, San Francisco, May
1997 and Quality Week Europe Conference, Brussels, November 1997
O'Neill, Don, “Software Inspections and the Year 2000 Problem”,
CrossTalk, The Journal of Defense Software Engineering, Vol. 11 No. 1,
January 1998 '

Paulk, Mark C., “The Capability Maturity Model: Guidelines for Improving
the Software Process”, Addison-Wesley Publishing Company, 1995

Van Verth, Patricia B., "A Concept Study for a National Software
Engineering Database", CMU/SEI-92-TR-23, July 1992

Wallace, Dolores R., Laura M. Ippolito, and Herbert Hecht, "Error, Fault,
and Failure Data Collection and Analysis", http://hissa.ncsl.nist.gov,
Quality Week, San Francisco, May 1997

Software Engineering Workshop

AUTHOR: Don O'Neill

Don O’Neill is a seasoned software engineering manager and technologist currently serving as an
independent consultant. Following his twenty-seven year career with IBM’s Federal Systems
Division, Mr. O’Neill completed a three year residency at Carnegie Mellon University’s Software
Engineering Institute (SEI) under IBM’s Technical Academic Career Program. There he developed
a blueprint for charting software engineering evolution in the organization including the training
architecture and change management strategy needed to transition skills into practice.

As an independent consultant, Mr. O’Neill conducts defined programs for managing strategic
software improvement. These include implementing an organizational Software Inspections
Process, implementing Software Risk Management, and conducting Global Software
Competitiveness Assessments. Each of these programs includes the necessary practitioner and
management training.

In his IBM career, Mr. O’Neill completed assignments in management, technical performance, and
marketing in a broad range of applications including space systems, submarine systems, military
command and control systems, communications systems, and management decision support
systems. He was awarded IBM’s Outstanding Contribution Award three times:
1. Software Development Manager for the Global Positioning
Ground Segment (500,000 source lines of code) and a team of 70 software engineers
within a $150M fixed price program.
2. Manager of the FSD Software Engineering Department responsible for the origination
of division software engineering strategies, the preparation of software management and
engineering practices, and the coordination of these practices throughout the division’s
software practitioners and managers.
3. Manager of Data Processing for the Trident Submarine Command and Control System
Engineering and Integration Project responsible for architecture selections and software
development planning (1.2M source lines of code).

Mr. O’Neill served on the Executive Board of the IEEE Software Engineering Technical
Committee and as a Distinguished Visitor of the IEEE. He is a founding member of the National
Software Council and the Washington DC Software Process Improvement Network (SPIN). He
is an active speaker on software engineering topics and has served as the Program Chairman and
Program Committee member for several conferences. He has numerous publications to his credit.
Mr. O’Neill has a Bachelor of Science degree in mathematics from Dickinson College in Carlisle,
Pennsylvania.

Contact Information

Don O’Neill

Independent Consultant

9305 Kobe Way

Montgomery Village, Maryland 20886

Phone: (301) 990-0377
email: ONeillDon@aol.com
http://members.aol.com/ONeillDon/index.html

word count: 4,581

@Copyright Don O'Neill, 1998 12 Software Engineering Workshop

TP T = == 2 T FRI T = = = 0 S T

=] @iH s PR iy o BRI | LUNC ! Sy ol D P O N P M B M oy |
nEnnnnnnnnnE Il e & & ;& (w00 EO0NE e s & & & T

NATIONAL SOFTWARE QUALITY EXPERIMENT
A LESSON IN MEASUREMENT
1992-1997

Don O'Neill
Independent Consultant
(301) 990-0377

http:/members.aol.com/ONeillDon/index.html

@Copyright Don O'Neill, 1998 1 National Software Quality Expetiment

Experiment Purpose

Don O'Neill Consulting

To measure progress towards the national objective

Reduce software problems by a factor of 10
by the year 2000

Set by the DOD Software Technology
Strategy in 1992

To benchmark the state of software product quality

@Copyright Don O'Nelll, 1998 2 National Software Quality Experiment

Some of the Questions Asked and
Answered in the Experiment

Don O'Neill Consulting

To what extent is there a continuing stream of requirements
changes?

What are the leading types of errors?

Are errors traced to people or process?

Is a standard development process followed?

To what extent are wrong software functions being developed?
To what extent are there shortfalls in real time performance?

Is gold plating a problem?

@Copyright Don O'Neill, 1998 3 National Software Quality Experiment

Experiment Participants

Don O'Neill Consulting

« Accounting, personnel, « Electronic warfare
administration « FAA communications

« Administrative and « Factory line support
management decision * Financial services
support + Global positioning system

- Aircraft jet engine user sets
diagnostics, logistics, and - Insurance and medical
maintenance information

* Artillery fire control system « International banking

« Avionics flight on-board - Joint Chiefs of Staff
control support

- Control devices for avionics - Medical information
applications system

- Credit card application - Naval surface weapons

- Department of State system
embassy support * Pre and post flight space

+ Electronic commerce application

+ Telecommunications

@Copyright Don O'Neill, 1998 4 National Softwate Quality Experiment

Experiment Centerpiece: Inspection Lab

Don O'Neill Consuting ~

el

Structured
Review
Process

Forms and
Reports

Entry Task Exit
Criterla Criteria

o]

IR
ISR
VI
SL%%‘IJ(?Itsts I————— Defined
I
IR
@Copyright Don O'Neill, 1998 5 National Software Quality Experiment

Don O'Neill Consulting

Completeness
Traceability from code to requirements

Correctness
Intended function with faithful elaboration of steps that carry it out

Style

Naming, commentary, alignment, case, highlighting, templates

Rules of Construction
Application domain specific reference architecture

Multiple Views

Programmer, tester, user, computer resources, security, Y2K

@Copyright Don O'Nelll, 1998 6 Natlonal Software Quality Experiment

Inspection Reporting Form
Issue Page/ |Checklist | Defect Defect |Defect |Defect |Defect
Number| Line Category |Severity |Type |Origin [Description
Defect Category: Missing, Wrong, Extra Defect Type: Interfacs, Data, Logic, I/O, Performance,
Defect Severity: Major, Minor Functionality, Human Factors, Standards,
Documentation, Syntax, Maintainability, Other

@Copyright Don O'Nelll, 1998 7 Natlonal Software Quallty Experiment

Defect Severity and Category
Summary

Don O'Neill Consulting

Defect Severity and Category Summary

Missing Wrong Extra Total
Major 7.44 5.95 .88 14.27
Minor 49.76 27.63 8.32 85.73
Total 57.20 33.60 9.20 100.00

@Copyright Don O'Neill, 1998 8 National Software Quality Experiment

Inspection Lab Operations Summary

Don O'Neill Consulting ~

Sessions Prep
Effort

2317 142,306

Metrics:

12.51
76.76
2.35
12.08
9206
4.91
4.48

NoaRhwn =

INSPECTION LAB OPERATIONS

Conduct Major Minor Size in
Time Defects Defects Lines
52,196 1854 9521 788,459

minutes of preparation effort per defect
minutes of preparation effort per major defect
major defects per KSLOC

minor defects per KSLOC

lines per conduct hour

Defects per session

Return on Investment

@Copyright Don O'Neill, 1998

9 National Software Quality Experiment

Software Inspections Control Panel

Don O'Neill Consulting

Defect Detection Rate Gauge Defect Density Gauge

2 14

90 12

New Development
Lines Per Conduct Hour

Minutes of Minutes of Maior Defect .
Preparation Proparation Per Thousand s
or Effort .
Per Major Defect Per Minor Defect Lines Lines
Inspection Conduct Rate Gauge Return on Investment Gauge

1200 4

400
2(@00 @1500 2 6

Legacy Lines Per
Conduct Hour

Net Savings/Detection Cost

@Copyright Don O'Nelll, 1998

10 National Software Quality Experiment

Defect Types
[1992-1907]

50.00 1~ M interface

. Data

L.ogic

170

. Performance

Functionality

Human Resources

Standards

E Documentation

Syntax

Test Environment

EJ Test Coverage

. £ : E Maintainability
Percent of Defect Types | Other

Don O'Neill Consulting o

40.00

30.00

20.00

~ 3 o0 oY

10.00 1~

0.00

@Copyright Don O'Neill, 1998 11 National Software Quality Experiment

Common Problems

Don O'Neill Consulting ~

1. Software product source code components are not traced to
requirements.
As a result, the software product is not under intellectual control,
verification procedures are imprecise, and changes cannot be
managed.

2. Software engineering practices for systematic design and structured
programming are applied without sufficient rigor and discipline.
As a result, high defect rates are experienced in logic, data,
interfaces, and functionality.

3. Sioftware product designs and source code are recorded in an ad hoc
style.
As a result, the understandability, adaptability, and
maintainability of the software product are directly impacted.

4. The rules of construction for the application domain are not clearly
stated, understood, and applied.
As a result, common patterns and templates are not exploited in
preparation for later reuse.

@Copyright Don O'Neill, 1998 12 National Software Quality Experiment

Software Process Maturity Level

Don O'Neill Consulting ~

Major Defects Per Thousand Lines ! Minor Defects Per Thousand Lines }
. Level 1 30.00 . Level 1
. Level 2 . Level 2
Level 3 Level 3
Process Maturity Level Process Maturity Level
Lines Per Conduct Hour I Defects Per Session
120000 o .Level1 6.00 .Levd.]
800.00 1- Bieez| | 400 B,
40000 Level3 | | 2.001- -
o 000 . Level 3
Process Maturity Level Process Maturity Level
@Copyright Don O'Nelll, 1998 o - 13 o National sm‘tvdéra Quality Expen;nent

Return on Investment

Don O'Nsill Consulting

[Return on lnvestmentl

. Participants

National Software Quality Experiment

@Copyright Don O'Nelll, 1998 14 National Software Quality Experiment

Experiment Findings Summary

Don O'Neili Consulting ~

Lack of Progress

-The objective to reduce software problems by a factor of 10 is not
being met

Looking Harder, Finding More
-By reducing the size of artifacts inspected

Program Size Matters
-Defect density decreases with program size
-Starting, finishing, and fitting in are all more error prone than the
body of the program which gives it size

Software Process Maturity Insight
-Legacy software anchors many organizations at level 1
-These are often commercial enterprises

Process Neglect Exceeds Personal Defects
-Organization neglect of its software process exceeds the poor
workmanship of individual programmers as the source of errors
-Documentation and standards defect types account for nearly two-
thirds of all defects

Return on Investment High
-Software inspections deliver a favorable return on investment with
-Savings exceed costs by 4 to 1

@Copyright Don O'Nelli, 1998 15 National Software Quality Experiment

Field Measurement Lessons

Don O'Neill Consulting ~

1. Measurement must be aligned with business and
performance needs.

These activities must be built into the normal operation of the organization.

To do this, the goals to be met and questions to be answered in management,
engineering, and operations must precede the collection of data.

2. Metrics must be carefully pinpointed and
rigorously defined.

Extraordinary steps must be applied to obtain consistency and uniformity.

Without a well defined process for data collection and analysis, the variance in the
measurement process itself impacts the accuracy of results.

3. Attention must be paid to the confidentiality of
results.

The opportunity for improvement is increased when the measured results are made
more widely available.
-However, individuals and groups naturally resist having their shortcomings
made public.
-If ignored, this resistance will defeat the measurement program.

-The organization must strike a balance between public and private data.
@Copyright Don O'Neill, 1098 16 National Software Quality Experiment

NATIONAL SOFTWARE QUALITY EXPERIMENT
A LESSON IN MEASUREMENT

PROLOGUE

The nation's prosperity is dependent on software. The nation's software industry is slipping, and it is slipping behind
other countries. The National Software Quality Experiment is riveting attention on software product quality and
revealing the patterns of neglect in the nation's software infrastructure.

ABSTRACT

In 1992 the DOD Software Technology Strategy set the objective to reduce software problem rates by a factor of ten by
the year 2000. The National Software Quality Experiment is being conducted! to benchmark the state of software
product quality and to measure progress towards the national objective.

The National Software Quality Experiment is a mechanism for obtaining core samples of sofiware product quality. A
micro-level national database of product quality is being populated by a continuous stream of samples from industry,
government, and military services. This national database provides the means to benchmark and measure progress
towards the national software quality objective and contains data from 1992 through 1997.

The centerpiece of the experiment is the Software Inspection Lab where data collection procedures, product checklists,
and participant behaviors are packaged for operational project use. The uniform application of the experiment and the
collection of consistent measurements are guaranteed through rigorous training of each participant. Thousands of
participants from dozens of organizations are populating the experiment database with thousands of defects of all types
along with pertinent information needed to pinpoint their root causes.

To fully understand the findings of the National Software Quality Experiment, the measurements taken in the lab and
the derived metrics are organized along several dimensions including year, software process maturity level,
organization type, product type, programming language, global region, and industry type. These dimensions provide a
framework for populating an interesting set of analysis bins with appropriate core samples of software product quality.

1 The National Software Quality Experiment is an entrepreneurial activity
@Copyright Don O'Nelll, 1998 17 National Software Quality Experiment

Author: Don O'Neill

Don O'Neill is a seasoned software engineering manager and technologist currently serving as an independent
consultant. Following his twenty-seven year career with IBM’s Federal Systems Division, Mr. O'Neill completed a three
year residency at Carnegie Mellon University's Software Engineering Institute (SEl) under IBM's Technical Academic
Career Program. There he developed a blueprint for charting software engineering evolution in the organization
including the training architecture and change management strategy needed to transition skills into practice.

As an independent consultant, Mr. O’Neill conducts defined programs for managing strategic software improvement.
These include implementing an organizational Software Inspections Process, implementing Software Risk
Management, and conducting Global Software Competitiveness Assessments. Each of these programs includes the
necessary practitioner and management training.

In his IBM career, Mr. O'Neill completed assignments in management, technical performance, and marketing in a broad
range of applications including space systems, submarine systems, military command and control systems,
communications systems, and management decision support systems. He was awarded IBM's Outstanding
Contribution Award three times:
1. Software Development Manager for the Global Positioning Ground Segment (500,000 source lines of
code) and a team of 70 software engineers within a $150M fixed price program.
2. Manager of the FSD Software Engineering Department responsible for the origination of division
software engineering strategies, the preparation of software managementand engineering practices,
and the coordination of these practices throughout the division’s software practitioners and managers.
3. Manager of Data Processing for the Trident Submarine Command and Control System Engineering and
Integration Project responsible for architecture selections and software development planning (1.2M
source lines of code).

Mr. O'Neill served on the Executive Board of the IEEE Software Engineering Technical Committee and as a
Distinguished Visitor of the IEEE. He is a founding member of the National Software Council and the Washington DC
Software Process Improvement Network (SPIN). He is an active speaker on software engineering topics and has
served as the Program Chairman and Program Committee member for several conferences. He has numerous
publications to his credit. Mr. O'Neill has a Bachelor of Science degree in mathematics from Dickinson College in
Carlisle, Pennsylvania.

@Copyright Don O'Neill, 1998 18 National Software Quality Experiment

Abstract

Objectives

In This Paper

Principles of Successful Software Inspections

Dennis Beeson and Tim Olson

World-Class Quality
3082 Hamline Ave. N., St. Paul, MN. 55113
Phone: 612-636-2234
Email: DDBeeson@gte.net, Tim.Olson@worldnet.att.net

Software inspections remain the most effective method of early defect detection and
removal (e.g. early defect detection 80 - 90%, ROI 7:1 - 12:1). Yet many
organizations are unsuccessful at invoking the cultural changes required to implement
and sustain an effective software inspection process. So what can an organization
focus on to change people’s perspective of inspections to develop a quality culture
centered around software inspections? This paper will identify some of the essential
attributes or principles of software inspections which facilitate in building and
sustaining a quality culture. This paper will measure the F/A-18 Software
Development Team’'s inspection process against these principles to determine
software inspections effectiveness as well asidentify areas for future improvement.

The objectives of this paper are to:
- present some common cultural problems associated with software inspections.
- present some successful software inspection data from the F/A-18 Aircraft.

- present an overview of effective principles that are successful when performing
software inspections.

- benchmark the F/A-18 Software Development Team's inspection process against
inspection principles identified to determine effectiveness and indicate areas for
Improvement.

The following table describes the title and starting page of each section:

Section See Page
The Positive Impact of Inspections on F/A-18 2

Benchmarking the F/A-18 Inspection Process

Some Principles of Successful Software Inspections
Measuring the Principles of the F/A-18 Inspections
References

olo|b~|w®

Copyright © 1998 by World-Class Quality Page 1 of 6

The Positive Impact of Inspections on F/A-18

Background

Since 1987, the F/A-18 Software Development Team (SWDT) at the Naval Air
Warfare Center - Weapons Division (NAWC-WD) has been providing system and
software engineering maintenance and upgrades on the F/A-18 A/B model aircraft
Mission Computer (MC) and Stores Management System (SMS) for the US Navy and
Foreign Military Sales (FMS) customers.

F/A-18 Mission The F/A-18 SWDT has undertaken four major upgrades to the F/A-18 aircraft's

Computer
Upgrades

F/IA-18 MC

Mission Computer (MC) Operational Flight Program (OFP). The MCs are the center
of the F/A-18's avionics architecture. The MCs are the primary link between the
aircrews cockpit display environment and the aircraft's tactical and air vehicle
management avionics subsystems.

Figure 1 illustrates the overall impact software product inspections and software

Defect Removal process improvement have had on product quality. During a ten year period involving

LifeCycle

over 5000 inspections, early defect detection and defect prevention have significantly
moved the defect removal curve to the left. The majority of product defects are now
found in the requirements, design and coding phases. In fact, over 86.6% of all
defects are found before testing. The defect removal life cycle curve is also used to
demonstrate product maturity to the customer.

Defects per KSLOC

40.00

35.00

30.00

25.00

20.00

15.00

10.00

0.00

F/A-18 A/B Mission Computer Defect Removal Life Cycle

Defects Found in System
Integration Testing

(22.62)
est.

2.15

O 89A OFP [1990)
[0 92A OFP [1993)
[10A OFP [1996) m
B 124 OFP [1998) —

Defects per KSLOC

10A
89A OFP I 92A . | 12A]_

1990 1993 1996 1998

n ol — lm,

System " Software 'Design Code Unit Sysfem System Fleet
Design Reqt.’s Test Int. Test Ver. Test Use

Figure 1: F/A-18 A/B Mission Computer Defect Removal Life Cycle

Copyright © 1998 by World-Class Quality Page 2 of 6

Benchmarking the F/A-18 Inspection Process

World-Class Benchmarking the F/A-18's inspection process data against a world-class level. Over

Software the last 10 years, the F/A-18 SWDT has progressed from an average performing SEI

Benchmarks CMM Level 1 organization to comparing favorably against world-class software
organizations. Table 1 characterizes current performance of various world-class
organizationsto the F/A-18 SWDT current performance capability.

Measurement World-Class F/A-18 Software
Benchmark* Development Team
Quality
Inspection Defect Removal Efficiency | 80%-90% 86.6%
Post-Release Defect Rate .01 per KSLOC .01 per KSLOC
Cost
Total Cost Savings $7.5-$45 Million $14.4 Million
($ 3.6M per major update)
Inspection Cost $2,500 on Average $1,500 on average
Return on Investment (ROI) 7:1-12:1 71
Schedule
Schedule / Cycle Time Reduced 10-25% per yr. | Reduced 9% per year
Productivity Doubled in 3 years Increased 62% in 3 years

Table 1 World-Class Software Benchmarks *derived from World-Class Quality - Timothy G. Olson copyright 1995 - 1996

Copyright © 1998 by World-Class Quality Page 3 of 6

Principles of Successful Software Inspections

Principles of
Software
I nspections

To fully understand how to optimize software inspections to promote team building
and improve individual learning it was necessary to have a clear description of the
core attributes or principles that make software inspections successful from a people
prospective. Only after these principles were identified was it possible to make the
necessary process improvements. Research and benchmarking of software
inspections best practices were successful in identifying the following principles

found in most effective inspection processes:

Principles

Description

Leadership

Management should provide resources and be an active participant in
communicating, mentoring, and building the organizations quality
culture. Facilitate the team in setting clearly stating mission, goals, and
objectives centered around quality, quality measurement, and quality
improvement.

Quiality Culture

Foster commitment to designing in quality. Develop an understanding
of the quality expectations, values, and priorities of the immediate and
final customers.

Responsibility

Foster responsibility for the quality of the end product

Process Ownership

Team participation
mechanisms.

in process definition and process change

Defect Prevention

Foster commitment to learning from past defects.

Communication

Foster open honest communication supported by effective meeting
facilitation. Understand the strength and weaknesses of self, team, and
organization and use this diversity to optimize effectiveness. Operate
organization with integrity, making decisions based on what is truly best
for product quality and the organization.

Feedback Give feedback on individual defects found, overall product quality,
status of defect prevention (e.g. common defect trends identified,
changes to data driven checklists).

Defect Analysis | Analysis and tracking of defect density per development phase and
determining criteria for reinspection.

Agreement Management, engineering, suppliers, and immediate and find
customers should effectively review and agree to product plans (e.g.
schedule, resources, staffing, quality objectives, etc..).

Defined Process | Fully communicate what is expected of management, engineering,
suppliers, and immediate and final customers (e.g. what, how, when,
were, why).

Training Effectively train people in inspection purpose, roles, process,
facilitating meetings.

Defect Formal mechanism for documenting, categorizing, and dispositioning
Identification

defects. Defect identification involves gathering defect and associated
metrics (e.g. size, effort, cost, time, rework). Defect identification is
usually supported by data driven checklists.

Accountability

Formal mechanism hold developers, reviews, and moderators
accountable for fulfilling their role in the inspection process.

Copyright © 1998 by World-Class Quality

Page 4 of 6

Measuring the Principles of the F/A-18 Inspections

FIA-18 Over the last ten years the F/A-18 Software Development Team has training

Software Team gpproximately 50 software engineers in formal inspections. Most have never used
formal inspection methods before working on the team. As they progress in
knowledge and understanding of inspections they move up in their level of
commitment to the teams product quality goals and buy-in to the inspection process.
The principles of software inspects need to be effective and in place to protect against
loosing buy-in or commitment, issues of non-compliance, or to assist in gaining
enough trust in the team and the inspection process to move to a higher level of buy-in
or commitment.

Questionnaire A survey was conducted of the F/A-18 Software Development Team in order to
measure the buy-in and commitment to the software inspection principles. The table
below shows the results:

Principles of Inspections Questionaire Results

100 T - . [__]
90 | I I I I
80 T

07T
60 T
50 T
40 T
30T
20T

10 T

0 1

Percentage Responses agree - strongly agree

= -
2 z 92 45 & & g § =vg 2 e =
g 5 %2 9% 8 S ¢ €& g% £ s £
2 3 Sg B¢ £ e A& g B8 & 9% 3
s 5§ a2 B3 5 L < g oo = ® 9O g
= o (@] a £ b3 o o= 5
a £ S s}
L S S 8
o S S g
Principles of Inspections
Summary Achieving measurable results using software inspections requires understanding

fundamental principles, and then tailoring those principles to practice. These
principles must then become part of an organization’s day to day business.

by World-Class Quality Page 5 of 6

References

References

The references used for this presentation are:
- [Covey 91] S. R. Covey, Principle Centered Leadership, New York, NY:

Simon & Schuster, 1991

- [Senge 90] P. M. Senge, The Fifth Discipline, New Y ork, NY: Currency

Doubleday, 1990

- [Curtis95] Curtis, Bill, et al. People Capability Maturity Model (CM U/SEI-95-

MM-02). Pittsburgh, PA: Carnegie Mellon

- [Deming 95] W. E. Deming, Out of Crisis, Cambridge, MA: MIT Center

for Advanced Engineering Study, 1995

- [Beeson 98] D. D. Beeson and T. G. Olsen, "Benchmarking F/A-18

Software Inspection Data’, SEI 1998 Conference Proceedings, 1998.

- [Barnard 94] Barnard, J. and Price, A. “Managing Code Inspection

Information*, |EEE Software, March 1994.

[Billings 94] Billings, C., et al. “Journey to a Mature Software Process’, IBM

Systems Journal, vol. 33, no. 1, 1994.

[Ebenau 94] Ebenau, B. and Strauss, S., Software Inspection Process. McGraw-

Hill, 1994.

[F/A-18 96] F/A-18 MC/SM S Software Processes; February 12, 1996.

[F/A-18 97] F/A-18 Systems Engineering Process Guide; August 9, 1997.

[Fagan 76] Fagan, M. “Design and Code Inspections to Reduce Errorsin

Program Development”, IBM Systems J., no. 3, 1976. pp 182-210.

[Fagan 86] Fagan, M. “Advancesin Software Inspections’, IEEE Transactions

on Software Engineering, July 1986

[Gilb 93] Gilb, T. and Graham, D. Software Inspection. Addison-Wedey, 1993.

[Grady 94] Grady, R. and Van Slack, T. “Key Lessons In Achieving Widespread

Inspection Use”, |EEE Software, July 1994.

[Herbsleb 94] Herbsleb, James, et a. “Benefits of CMM-Based Software

Process Improvement: Initial Results’, CMU/SEI-94-TR-13, 1994.

[Humphrey 89] Humphrey, W. S. Managing the Software Process. Reading,

MA: Addison-Wed ey Publishing Company, 1989.

[Olson 94] Olson, Timothy G., et a. “A Software Process Framework for the
CMU/SEI-94-HB-01, 1994.

[Olson 96] Olson Timothy G., “World-Class Software Inspections’, SEI

1996 SEPG Conference Proceedings, 1996.

[Paulk 93] Paulk, Mark C., et a. Capability Maturity Model for Software,

Version 1.1 (CMU/SEI-93-TR-24). Pittsburgh, PA: Carnegie Mellon University,

1993.

- [O' Hara97] F. O'Hara, Achieving maximum benefits from formal

reviews/inspections - strategies and case studies, proceedings of EuroSTAR'97,
Edinburgh and SPI'97, Barcelona, 1997.

Copyright © 1998 by World-Class Quality Page 6 of 6

g Principlas of Sucoeesiul Softwars ngpactions

Principles of Successful
Software Inspections

NASA/Goddard Software Engineering

Workshop
Presented by

Dennis Beeson Tim Olson, President
F/A-18 Software Development Team, Manager World-Class Quality
Ki Solutions Consulting, Co-Founder Juran Institute Associate
SEI Certified SCE Evaluator Authorized SEI Lead Assessor
(760) 375-3376 (612) 636-2234
DDBeeson@gte.net Tim.Olson @worldnet.att.net

World-Class Qualty, Copyright © 1997 - 1998 Pace 1

Principles of Successiul Soffware nspections

Obijective

® Provide principles of effective software inspections
derived from real-world organizations

® Example using inspection principles to benchmark:

m Inspection process
m Individual buy-in and commitment

World-Class Guality, Copyright © 1397 - 1993

Brinciples of Bucceasful Softwars Inspsctions

Agenda

® F/A-18 Software Team Overview
e Software Inspection Principles Identified

® Benchmarking Inspection Process

® Inspection Principles and Buy-in
@ Measuring People Buy-in and Commitment

® Question ?2???

Workd-Class Quality, Copyright © 1957 - 1998 Poge 3

Principles of Successiul Softwars Inspsclions

F/A-18 Software Team Overview

Measurement World-Class F/A-18 Software
, Benchmark Development Team
[QuaLITY
& ﬁ Lk * Inspection Defect Removal 80% - 90% 86.6%
- \’"’ Efficiency :

SEI CMM Level 3rating | . post-Release Defect Rate .01 per KSLOC .01 per KSLOC
COST
« Total Cost Savings $7.5M-$45M $14.4 Million
* Inspection Cost $ 2500 on Avg. $1500 on Avg.
* Return on Investment (ROI) 7:1-12:1 74
SCHEDULE
* Schedule / Cycle Time Reduced 10-25% yr| Reduced 9% per yr
» Productivity Doubled in 3yrs | Increased 62% in 3 yr

Mission
Computer

Word-Class Qualty, Copyright © 1997 - 1998

F/A-18 Software Team Performance

F/A-18 Mission Computer Defect Removal Life Cycle
40 .
o] [rfPetects Found in System
35 S|k Integration Testing
g
a0 W A 89A OFP (1990) 5|
o H 92A OFP (1903 @
Q
S 25 J{H 10A OFP (1906) 3 2 (348]
2 B 12A OFP (1909) ’ o e 2.09
3 20 [A L [
Q £ 9A 92A 10A 12A
@]
'g 15 L
® Y g
S 1o L
] 4
5 /
0 m, ' -—
System Software Design Code Software System System Fleet
Design Reqmts Insp. Int. Test Int. Test Ver. Test

Word-Clase Quality, Gopyright © 1937 - 1938 Paae - 5

i Principles of

Technology

World-Class Guslity, Copyright © 1997 - 1498 EETERY

Principles of Software Inspections Identified

Leadérship ‘ _' oster, communicate, mentor, and facilitate a quality culture

| e L personally identifies with quality of product

e sl il willing to take on process improvement

e G U Hroot cause analysis of common defects for data driven checklists

et vl facilitated meetings, environment focused on product quality

Feedback author defects, product defect density

Bl i] defect density per development phase and reinspection criteria

Agreement agreement to plans and tasking

85 1 sl ye1 1 clear description of what to do when

Training re-enforcement of what to do when and why

Defect
dentitication

| document, categorize, and disposition defects

Accountability reinspection criteria and moderator tracking defects to closure

Work-Ciass Quaity, Copyrght © 1997 - 1998

‘Wond-Class Quality, Copyright © 1997 - 1958

i Principles Soffware clions

Benchmarking the Inspection Process

. lLeadership ® Quality Definition
(e.g. Conformance to customer requirements. meeting or beating defect

fesporibiity removal lifecycle removal curve)

Process
Ownersghip

»Defect sVl @ Define, document, and train defect prevention process

Communication Add sverview meeting to educate reviewers on ingpection package
Feedback ' Insure feedback on project defect density per phase

Defect Analysis Reinspection criteria (e.g. 10 major defects found or low preparation rate)

- 'A:'greement Review development plan with software engineers
Defined Process

. erator training stressl it inspection
Training Add moderator raining stressing facilRation skills and Inspe

principles
Defect - Update general inspection training class with inspection principles
Identification Drata driven checklisis 1o educate reviewer on commeon defects

Preparation rate set a 10 - 15 pages per hour
Entry criteria for review material
(e.g. checklist of items, spell checked, clean compile)

. Accountability

Does whatever is needed including creating new norms

Does whatever can be done within the nornié

. Enroliment

Genuine
Compliance

Sees benefit, does what is expected and more

Leadership

Responsibility

Process Ownership

Defect Prevention

Commitment | =80

: Sees benefit, does what they are told

Communication

based on [leddyfili s Feedback
ef_feqtlve Defect Analysis
principles

Grudging
Compliance

Does not see benefit, does not want to lose their job

Agreement

Defined Process

Training

Defect
Identification

Non-
‘Compliance

Won’tdo it

Accountability

Does nothing

Apathy

World-Ciass Quelity, Gopyright © 1937 - 1998

Principles of

sful Software Inspsciions

Poge - 9

Principles of Inspections Questionaire Results

100 T

90
80
70
60
50
40
30
20
10

Percentage Responses agree - strongly agree

Leadership
Responsibility
Process
Ownership
Defect
Prevention
Communication
Feedback
Defect
Analysis
Agreement
Defined
Processes
Training

Principles of Inspections

Defect
Identification

Accountability

Worka-Ciaws Gualy, Copynght © 1997 - 1998

sful Softwars Ingpactions

Questions ?7???

World-Class Quality, Copyrght © 1997 - 1998 Dot - 11

Capture-Recapture — Models, Methods, and the Reality

Jens-Peder Ekros® jenek@ikp.liu.se
Anders Subotic? andsu@ida.liu.se
Bo Bergman® bober @ikp.liu.se

'Division of Quality Technology and Management

2Department of Computer and Information Science
Applied Software Engineering L aboratory

2| inképing University,
SE-581 83 Linkdping, Sweden

Abstract

Software inspections are widely used for defect detection, and are capable of detecting defects early in
development. In order to avoid spending too much resource and to assure that the inspected product has the
demanded quality, a method to estimate product quality and inspection performance would be helpful. For
this purpose, capture-recapture methods have been suggested. In this paper, we explore the relation between
models underlying capture-recapture methods and inspection data. We have tested three hypotheses that
underlie commonly used capture-recapture methods: Inspectors find the same number of defects; Defects
are equally easy to detect; and, Inspectors find the same defects. We find no support for any of the three
hypotheses. The paper also contributes to research by describing methods for testing the hypotheses. It is
not wise to generalise from these results, as the sample analysed is small. Nevertheless, the resultsimply
that the underlying models, or assumptions, of commonly used capture-recapture methods are not generally
applicable to software engineering.

Introduction

Software plays an important role in today’ s society. The high dependence on software has put focus on
software quality engineering. Customer satisfaction through good quality gives competitive advantage.
Further, lack of quality costs, especially if quality deficiencies remain undetected from early phases of
development. The lowest level of quality engineering is the detection of defects for the sole purpose of
correction. The second level is quality assurance, where product measurements is compared to standards so
asto assure that the shipped product is of the “right” quality. To assure is more demanding than to detect,
and requires models of product quality.

Software inspection is a family of widely used methods for defect detection, capable of detecting defects
early in development. In many organisations that develop software, inspections are an essential part of the
process. It has been recognised that inspections have a positive effect on product quality as well asthe
efficiency of the development process. However, inspections demand time and resources. Preparations must
be made before the inspection meeting where many key persons will attend. Thisis a problem. In order to
avoid spending too much resource and to assure that the inspected product has the demanded quality, a
method to estimate the performance of the inspection would be helpful.

Several approaches based upon different statistical techniques have been evaluated in order to get better
basis to assess the above mentioned aspects. Briand et al. (1997) described three approaches:

1. Comparing inspection results with historical defect count.

2. Comparing inspection results with a baseline for defect density.

3. Estimating the number of residual defects using the current inspection results.

This paper addresses issues related to the third approach.

Lately, capture-recapture methods have gained increased attention in the software engineering community,
see e.g. Eick et al. (1992). The purpose of capture-recapture methods s to estimate the size of populations.

These methods have their origin in the biological research society, recent examples include Chao (1988),
Chao et a. (1992), and Pollock (1991). The methods have also been used outside of the biology area. For
example, Efron and Thisted (1976) estimated the number of words known by Shakespeare.

Adapting methods to new areas, i.e. software inspections, may lead to difficulties which one has to have in
mind. The most important aspect of adaptation is that of the underlying models. The different estimation
methods assume certain conditions on the data, i.e. specific models. If the model does not correspond to the
data, the method may give results that are either incorrect or easily misinterpreted.

From related work we have found that there sometimesis alack of distinction between models and
methods, also known as estimators, or the issue is not mentioned altogether. The bulk of work on capture-
recapture in the field of software engineering has been concerned with methods, e.g. Vander Wiel and
Votta (1993), Wohlin et al. (1995), Briand et al. (1997), Miller 1998, and Wohlin and Runesson (1998).
Assumptions have been made, and sometimes claimed, with little support from literature or analyses, e.g.
Vander Wiel and Votta (1993) and Wohlin et al. (1995). There are few tests of consequences of broken
model assumptions on results, e.g. Vander Wiel and Votta (1993). However, analyses investigating how the
assumptions behind methods correspond to reality are missing.

In this paper we examine published inspection data setsin order to learn more about inspector capability,
defect detectability, and how these relate to each other. The importance of thiswork isthat it provides a
basis for use of prediction methods, by validating, or invalidating, model assumptions demanded by
methods. In order to manage this, new variants of statistical tools have been used. The differences between
inspection data and that of other fields, e.g. alow density of information in the tables, increases the
difficulty of conducting tests on inspection data. One problem is that ordinary distributions cannot be used.
Thisforces the creation of specific distributions for each specific case. These distributions depend on the
size of the table, the number of rows and columns, as well as the density of thetable, i.e. the ratio of ones.
A number of extended computer simulations of Monte Carlo type and enumeration were conducted in order
to create these distributions.

Background

Generally, capture-recapture based estimation of population size begins with sampling of the population.
The results of sampling are used as parameters in an estimator function, which gives the size of the
population, if certain conditions are fulfilled. In previous published work in the field of software
engineering, the main focus was investigation of the performance of different methods, or estimators. In
fact, methods and models are often confused. In this paper, an estimator, or method, denotes the way in
which an estimate is computed. A model represents a set of assumptions on input data under which a
method has been designed to work.

The most common families of models are:

1. p;j=p: the probability of an inspector having detected a defect is constant and does not vary with
inspector or defect.

2. p;=pi : the probability depends on the difficulty of the defect, which varies between defects, and all
inspectors have the same capability of detecting a specific defect.

3. p;j=p; : the probability depends on the capability of the inspector, which varies between inspectors,
and all defects are equally difficult to detect for a given inspector.

4. p;j=pi P the probability depends on the capability of the inspector as well as the difficulty of the
defect, which both vary.

5. pj=p;: the detection probability might be individual depending on both inspector and defect.

Miller (1998) gave additional assumptions that relate to the process of (re-)capturing.

The above mentioned models are implicitly used in estimators. The most common estimators are Jack-
knife, Maximum-likelihood, and the Chao estimator, of which there are several versions. The Jack-knife
estimator is based on model number two, Maximum-likelihood on number three, and Chao estimators exist
for numbers two to four.

Vander Wiel and Votta (1993) studied “the effects of broken [model] assumptions on” the Jack-knife and
Maximum-likelihood estimators. The Maximum-likelihood estimator was found to perform better than
Jack-knife, especially if defects were grouped to achieve homogenous detectability. Wohlin et al. (1995)
claimed that the assumptions of the Jack-knife method do not correspond to reality and rejected it in favour
of the Maximum-likelihood method. The claim was not supported by atest. They also evaluated afiltering
technique to improve estimates of residual defects. The new method was evaluated using data from an
experiment where a single document was inspected. Briand et al. (1997) examined the sensitivity of
methods with respect to the number of samples used, i.e. number of inspectors. They recommended that at
least four inspectors be used, and that the Jack-knife estimator was the best for four or five inspectors. The
Chao estimator with the same model as Jack-knife was comparable for five inspectors, but behaved badly
for four inspectors. The evaluation criticised by Miller (1998) with respect to choice of inspectors and
number of data points. Wohlin and Runesson (1998) proposed two new estimation methods based on
extrapolation of fitted curves. The methods are based on a number of assumptions that are not tested. The
methods were evaluated with inspection data from two experiments, where the choice of artefacts was
criticised by Miller (1998). Miller (1998) arrived roughly at the same conclusions as Briand et al. (1997).
However, Miller recommended Jack-knife for three to five inspectors and for six inspectors both Jack-knife
and the Chao estimator for model number four. In conclusion, there are no known examples in software
engineering literature where the viability of the models assumed by capture-recapture methods is tested.

Models and Tests

By using capture-recapture methods on inspection data we want to predict, or assess, the remaining number
of defectsin the inspected document, the performance of the inspection, or both. To facilitate analysis of
empirical datafrom a certain perspective, models that faithfully represent the data are needed. These
models are the basis for analysis methods. That is, the “ mathematical model ... relates the attributes to be
predicted to some other attributes that we can measure now. ” (Fenton and Pfleeger 1996)

A number of model assumptions have implicitly been made when a method has been chosen. The methods
are dependent on the underlying models that supposedly describe the data to be analysed. This isimportant
but often forgotten. In this section we will present ways to determine model characteristics of inspection
data. This gives a better basis for choosing or creating suitable estimation methods. By looking at published
results from a number of inspections some conclusions regarding the underlying models have been made.
We have aso made a contribution in the methods to determine these models.

The type of defect-inspector table used throughout this paper is shown in Figure 1. The table represents the
defects found asr rows and inspectors that found the defects as ¢ columns. Let n;; be the contents of a cell
representing the detection of defect i by inspector j. If the defect on row i was detected by inspector j, nj is
one, otherwise nj; is zero. The number of inspectors that detected defect i is the number of onesin row i, the
row sum, denoted n; . The number of defects detected by inspector j is the number of onesin column j, the
column sum, denoted n;. The total number of detections is denoted n_.

Inspector
1 C

n;

Defect
>

n J n,
Figure 1. Graphical description of an inspection data matrix.

In the rest of this section we describe tests for analysing inspection data, mainly with respect to aspects that
are relevant to the most commonly used capture-recapture methods. I nteresting aspects of inspection data
relate to inspectors, defects, and their relation.

Inspector Capability and Defect Detectability

The assumptions regarding the capabilities of inspectors are concerned with the number of defects detected
by each inspector. Intuition often suggests that inspectors have different capabilities but this has not yet
been tested, see e.g. Wohlin et al. (1995). The capability of inspectorsis tested by comparing the number of
defects found by each inspector with the average number of defects detected.

C
A test statistic similar to the Chi-square test (Everitt 1992) is utilised, Q= g & - =2 / . Problems

i=1€ 2
arise when the expected values of row or column sums are too small. The Chi-square test is commonly
considered to work less than well for values below five. With respect to row sums, this criterion is not
fulfilled by any of the tables analysed in this paper. The expected values of column sums fulfil the criterion
for roughly half of the tables. Preferably, under the null hypothesis of equality, the statistic for an observed
table is compared with a reference distribution. Since the Chi-square distribution is not applicable, a
substitute distribution has to be constructed.

Enumeration was the approach chosen for creating the distribution of the Q-statistic. That is, in e.g.
analysing inspector capability, the set of column sums of atableis analysed. The total number of detected
defects, the number of 1:sin atable, are distributed in all unique ways over the columns. The Q-statistic for
each permutation is computed and its occurrence is weighted by its probability under the assumption of
homogeneity. The result is a reference distribution adapted to characteristics of the table. The p-value for
the Q-statistic of the observed table, Q,, is obtained from the distribution as p = P(Q > Q,) , where the

variable Q belongs to the distribution.

Similarly to inspector capability, defect detectability is defined as the fraction of inspectors that found a
specific defect. That is, a defect found by many inspectorsis said to have a higher degree of detectability.
Wohlin et al. (1995) recommended that defects be divided into two groups based on the number of
inspectors that found each defect. When only one inspector found a defect the defect was put in alow
detectability group. Defects found by more than one inspector were put in a high detectability group.
However, this reasoning hides the assumption that defects have different probability of detection. The test
for difference among defects is the same as for inspector but along the other dimension of the table.

Defects and Inspectors Combined

A third approach to test inspection datais to consider defect and inspector characteristics at the same time.
That is, the test helps determine if inspectors are equally good in finding different types of defects. Since
the cell values of the tables analysed are either one or zero, chi-square tests are not appropriate. An
aternative test statistic is proposed. The new test statistic is built up by a sum of the differences between
the inspectors based on every specific defect.

Let | and m be the identities of two inspectors. Let n;; be one if defect i was detected by inspector j, and zero
otherwise. A matrix K is created wherek,, :{number of n, >n, } where | * mand

ki {number of m >0} A proposed test statisticis T = a a(é‘ / *w where w =1.

The diagonal of K, k” , represents the number of defects found by each inspector. Values outside the

diagonal i.e. kij represents the number of defects found by inspector i but not by inspector j. That is, abig

number outside the diagonal indicates that one of the inspectors found many defects not found by the other.
The matrix is quadratic, but it israrely symmetrical, as e.g. inspectors seldom find the same number of
defects.

The distribution of the T-statistic is not known, but needed in order to determine the meaning of a T-value.
Thus, the distributions of T for each table have to be generated. Due to problem size, enumeration is not an
option. Instead, Monte Carlo simulation isused. That is, the distribution of T for a given table is acquired
by computing the T-statistic for n randomly generated tables, with similar characteristics as the observed

table. The simulations are crucia to the reliability of the analysis, and so the bulk of work has been spent
on trying to achieve a simulation that represents the true probability distribution. Again, the rationale for
simulationsis that the distribution of the test statistic is unknown.

Results

In this section we investigate characteristics of published inspection data sets and in the process we provide
ways of testing model assumptions. The data sets were mainly taken from Freimut (1997), where the
majority originates from experiments using NASA subjects. A data set from Wohlin et al. (1995) and one
from Myers (1978) were also used in some of the analyses. The results are used for accepting or rejecting
the hypotheses stated above. Three different hypotheses are tested.

Inspector homogeneity

For each table k the test-variable Qy is calculated. The value Qy is compared to an empirical distribution
constructed using enumeration, as described above. For this analysis, two data sets were not used due to
time and size complexity problems, as there were many combinations to enumerate.

Under the null hypothesis of homogeneity, the expected value of pis 0.5. A low p-valueis the result of
large differences between the number of defects discovered by different inspectors. A single small p-value
supports rejection of the null hypothesis but is not enough to safely reject it. By combining analyses of a
number of tables we get a greater body of evidence. Figure 2 shows the p-values for the 22 different data
tables tested. Under the null hypothesis the p-values would be evenly distributed between 0 and 1. This
does not seem to be the case. The conclusion istherefore that the null hypothesisis rejected. Thus, based on
this set of data, we can say that inspectors generally do not find the same number of defects, i.e. inspector
capability varies with inspectors.

8

7F

)

&l

o

w

Occurrences of p-value

N

[N

o

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
p-value

Figure 2. p-values for inspector homogeneity.

Defect homogeneity

Analysing the defect detectability in the same way as inspector capability shows that it can be concluded
that defects do not have equal detectability. The p-values for the 22 data sets shown in Figure 3 clearly
indicate a non-equal distribution. That isit cannot be said that the different defects generally have equal
detectability. For this analysis, two data sets were not used due to time and size complexity problems, as
there were many combinations to enumerate.

10

Occurrences of p-value

1 _’_’_\
0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
p-value

Figure 3. p-values for defect homogeneity.

Another way of representing the p-values is with a scatter plot, shown in Figure 4. Here p-values for
inspector capability and defect detectability for 22 tables are plotted against each other. There are no rea
outliers. That is, no table plots in the upper right quarter. The plot gives stronger support for rejection of the
null hypothesis for defect detectability than for inspector capability. That is, defects are more
heterogeneous than inspectors. Even though inspectors seem to be more homogeneous than defects, they
are predominantly heterogeneous.

1r

I o o
~ o ©

o
=)

Inspector homogeneity p-value
o o o o
N w » (4]

o
e

%

ofs - !
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Defect homogeneity p-value

Figure 4. Scatter plot of defect and inspector homogeneity p-values.

Inspector and defect combined homogeneity

In this section, we analyse the relations between defects and inspectors. In Figure 5 the p-values from this
analysisis presented. The results stem from 10.000 simulations of 24 tables. Asin the other casesit can
clearly be seen that the p-values are not evenly distributed between 0 and 1. A low p-value is the result of
large differences between inspectors; i.e. inspectors find different defects. The distribution of p-valuesis
skewed towards zero. In fact, 50 percent of the values are lower than 0.1 and about 85 percent are less than
0.5. This situation is highly unlikely under the assumption that inspectors find the same defects. The
implication isthat there is no support for “inspector profiles’, i.e. groups of inspectors that find similar
subsets of the defect population. If groups of inspectors found largely the same defects p-values should be
skewed toward the right. It may be harsh to reject the concept of “inspector profile’ based solely on this
analysis. However, analytical advocacy is no longer enough.

Thisisanalysis differs from the test of inspector homogeneity above, where it was shown that different
inspectors find different number of defects.

12

10

Occurrences of p-value

. []

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
p-value

Figure 5. The p-values for combined inspector and defect homogeneity.

Conclusion and Discussion

In this paper we went back to the basics, that is, using the information from inspections to explore the
underlying models that are assumed to characterise inspection data. The road towards better methods and
correct use of existing methods will start from the most logical point, the distribution and properties of the
data.

We have tested three hypotheses occurring in capture-recapture work in the software engineering field:
1. Inspectorsfind the same number of defects.

2. Defects are equally easy to detect.

3. Inspectors find the same defects.

We find no support for any of the three hypotheses. These results imply that the underlying models, or
assumptions, of commonly used capture-recapture methods are not applicable to the software engineering
data analysed in this paper. Even though 24 data sets were analysed, 16 of these originate from NASA.
Thus, it is not wise to generalise from these results. However, the results suggest that it iswise to test
model assumptions. Testing model assumptions requires good data, which in turn requires good
instrumentation and collection procedures. We have instrumented the inspection process of an industry
partner, and are currently awaiting data to accumulate.

By exploring data from several inspections we are able to draw general conclusions about how the datais
formed. This includes measures of correlation between inspectors and between faults. Other aspects are the
distributions of inspectors’ performance and defect detectability. Naturally, it may not be possible to find a
single specific model that will explain all relationships between inspectors and defects. The data sets used
here, to estimate characteristics of product and inspection process, have only two parameters. It is not
unlikely that other product, process and resource attributes could increase the usefulness of estimators.
There may be important differences between instances of inspections, e.g. differing inspection rate, team
expertise, type of document, and organisational culture.

Even though universal models are few and far between, the goal is to find general models. It may be easier
to find methods to derive situation specific models. These methods can then be used together with local
inspection data to assure that a suitable estimation method is used. Still, it is questionable how the
information gained can be used. Does the estimate of defect content depend mainly on the product, the
measurement process, or both? If the inspection process is unstable, measurement noise may obscure

product attributes. For example, it is hard to determine if a high defect count is the result of a bad product, a
good inspection, or both. An accompanying metric is needed for normalisation.

Acknowledgements

The authors wish to thank Mary Helander for her helpful comments on this paper. This work was supported
by the Swedish National Board for Industrial and Technical Development (NUTEK), administrated by the
Swedish Ingtitute for Applied Mathematics, and the Swedish Foundation for Strategic Research through the
ECSEL graduate school at Linkdping University, Sweden.

References

Briand, L. C., Emam, K. E., Freimut, B., and Laitenberger, O. (1997). "Quantitative Evaluation of Capture-
Recapture Models to Control Software Inspections.” Report 97-22, ISERN.

Chao, A. (1988). “Estimating Animal Abundance with Capture Frequency Data.” Journal of Wildlife
Management, 52(2), 295-300.

Chao, A., Lee, S.-M., and Jeng, S.-L. (1992). “Estimating Population Size for Capture-Recapture Data
When Capture Probabilities Vary by Time and Individual Animal.” Biometrics, 1992(March), 201-
216.

Efron, B., and Thisted, R. (1976). “ Estimating the number of unseen species. How many words did

Biometrika, 63(3), 435-447.
Eick, S. G., Loader, C. R, Long, M. D., Votta, L. G., and Vander Wiel, S. (1992). “ Estimating Software
Proceedings of the Fourteenth International Conference of Software
Engineering, May, Melbourne.

Everitt, B. S. (1992). The Analysis of Contingency Tables, Chapman & Hall, London.

Fenton, N. E., and Pfleeger, S. L. (1996). Software Metrics. A Rigorous and Practical Approach,
International Thomson Computer Press, London.

Freimut, B. (1997). “ Capture-Recapture Models to Estimate Software Fault Content,” Masters Thesis,
University of Kaiserslauten.

Miller, J. (1998). "Estimating the number of remaining defects after inspection." Report 98-24, |SERN.

Myers, G. J. (1978). “A Controlled Experiment in Program Testing And Code Walkthroughs/Inspections.”
Communications of ACM, 21(9), 760-768.

Pollock, K. H. (1991). “Modeling Capture, Recapture and Removal Statistics for Estimation of
Demographic Parameters for Fish and Wildlife Populations: Past, Present, and Future.” Journal of the
American Statistical Association, 86(413), 225-238.

Vander Wiel, S. A., and Votta, L. G. (1993). “ Assessing Software designs using Capture-Recapture
Methods.” .

Wohlin, C., and Runesson, P. (1998). “ Defect Content Estimations from Review Data.” Proceedings of the
Twentieth International Conference on Software Engineering, April, Kyoto, 400-409.

Wohlin, C., Runesson, P., and Brantestam, J. (1995). “An Experimental Evaluation of Capture-Recapturein

Software Testing, Verification and Reliability, 5, 213-232.

Capture - Recapture
Models, Methods, and the Reality

Jens-Peder Ekros
Anders Subotic

Bo Bergman

Linkdping University, Sweden

Outline

o Usesof ingpections

o Capture-recapture methods
o Test of models

e Results

e Conclusion & Future Work

December 1998 Jens-Peder Ekros & Anders Subotic

Uses of inspections

* Primarily: detection of defects

« Additionally, inspection data can be used for:
— Quality assurance, e.g. using capture-recapture methods
— Quality control
— Process improvement and organisational learning

e Additional uses of inspection data involves models of
product, process and resource

December 1998 Jens-Peder Ekros & Anders Subotic

Capture-recapture methods

* Methods for estimating size of population
o Transferred from biology to software engineering
« Estimate defect content of software artefacts

e Common methods (estimators):
— Jack-knife
— Maximum likelihood
— Chao

e Different methods assume different models, i.e.
characteristics of input data

December 1998 Jens-Peder Ekros & Anders Subotic

Test of models

e Three assumptions were tested:
— Inspectors find the same number of defects (capability)
— Defects are equally easy to detect (detectability)
— Inspectors find the same defects

o Assumptionstested using old and new test statistics

o Distributions of test statistics created using Monte Carlo
simulation and enumeration

o 24 published data sets were used (16 from NASA)

December 1998 Jens-Peder Ekros & Anders Subotic

Inspector capabllity varies

December 1998 Jens-Peder Ekros & Anders Subotic

Defect detectability varies

18

16 }

14}

12

10}

December 1998 Jens-Peder Ekros & Anders Subotic

Detectabllity varies more than capabillity

1~
09} @
0.8}
0.7}

0.6@®

0.5

0.4

0.3

0.2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

December 1998 Jens-Peder Ekros & Anders Subotic

Inspectors do not find the same defects

12

10|

Occurrences of p-value

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
p-value

December 1998 Jens-Peder Ekros & Anders Subotic

Conclusion & Future work

e “Faultsain’t fish” - Models have to be validated
e Testsusing empirical data suggest:
— Inspectors do not find the same number of defects

— Defects are not equally easy to detect
— Inspectors do not find the same defects

 How can we use these results for better estimates?
Develop new or adjust existing estimation methods

 Moreindustrial datainvolved in the analysis
* Investigate the effects of broken assumptions

December 1998 Jens-Peder Ekros & Anders Subotic 10

Session 4: Fault Prediction

Software Evolution and the Fault Process
A. Nikora, Jet Propulsion Laboratory, and J. Munson, University of Idaho

Integrating Formal Methods Into Software Dependability Analysis
J. Knight and L. Nakano, University of Virginia

An Adaptive Software Reliability Prediction Approach
M. Yin, L. James, S. Keene, R. Arellano, and J. Peterson,
Raytheon Systems Company

SOFTWARE EVOLUTION AND THE FAULT PROCESS

Allen P. Nikora
Jet Propulsion Laboratory
Cdlifornia Institute of Technology
Pasadena, CA 91109-8099
Allen.P.Nikora@ jpl.nasa.gov

John C. Munson
Computer Science Department
University of Idaho
Moscow, ID 83844-1010
jmunson @cs.uidaho.edu

ABSTRACT

In developing a software system, we would like to
estimate the way in which the fault content changes
during its development, as well determine the locations
having the highest concentration of faults. In the phases
prior to test, however, there may be very little direct in-
formation regarding the number and location of faults.
This lack of direct information requires developing a
fault surrogate from which the number of faults and their
location can be estimated. We develop a fault surrogate

based on changes in the fault index, a synthetic measure
which has been successfully used as a fault surrogate in
previous work. We show that changes in the fault index
can be used to estimate the rates at which faults are in-
serted into a system between successive revisions. We
can then continuously monitor the total humber of faults
inserted into a system, the residual fault content, and
identify those portions of a system requiring the applica-
tion of additional fault detection and removal resources.

1. INTRODUCTION

Over a number of years of study, we can now estab-
lish a distinct relationship between software faults and
certain aspects of software complexity. When a software
system consisting of many distinct software modules is
built for the first time, we have little or no direct infor-
mation as to the location of faults in the code. Some of
the modules will have far more faults in them then do
others. We do, however, now know that the number of
faults in a module is highly correlated with certain soft-
ware attributes that may be measured. This means that
we can measure the software on these specific attributes
and have some reasonable notion as to the degree to
which the modules are fault prone [Muns90, Muns96].

In the absence of information as to the specific lo-
cation of software faults, we have successfully used a
derived metric, the fault index measure, as a fault surro-
gate. That is, if the fault index of amodule is large, then
it will likely have alarge number of latent faults. If, on
the other hand, the fault index of a module is small, then
it will tend to have fewer faults. As the software system
evolves through a number of sequentia builds, faults
will be identified and the code will be changed in an
attempt to eliminate the identified faults. The introduc-
tion of new code, however, is a fault prone process just
as was the initial code generation. Faults may well be
injected during this evolutionary process.

Code does not always change just to fix faults that
have been isolated in it. Some changes to code during its
evolution represent enhancements, design modifications
or changes in the code in response to continualy evolv-
ing requirements. These incremental code enhancements
may also result in the introduction of still more faults.

Thus, as a system progresses through a series of builds,
the fault index of each program module that has been
altered must also change. We will see that the rate of
change in the system fault index will serve as a good
index of the rate of fault introduction.

The general notion of software test is to make the
rate of fault removal exceed the rate of fault introduc-
tion. In most cases, this is probably true [Muns97].
Some changes are rather more heroic than others. Dur-
ing these more substantive change cycles, it is quite pos-
sible that the actual number of faults in the system will
rise. We would be very mistaken, then, to assume that
software test will monotonically reduce the number of
faults in a system. This will only be the case when the
rate of fault removal exceeds the rate of fault introduc-
tion. The rate of fault removal is relatively easy to
measure. The rate of fault introduction is much more
tenuous. This fault introduction process is directly re-
lated to two measures that we can take on code as it
evolves, fault deltas and net fault change (NFC).

In this investigation we establish a methodology
whereby code can be measured from one build to the
next, a measurement baseline. We use this measurement
baseline to develop an assessment of the rate of change
to a system as measured by our fault. From this change
process we are then able to derive a direct measure of the
rate of fault introduction based on changes in the soft-
ware from one build to the next. Finally we examine
data from an actua system on which faults may be
traced to specific build increments to assess the predicted
rate of fault introduction with the actual.

A major objective of this study is to identify a com-
plete software system on which every version of every
module has been archived together with the faults that
have been recorded against the system as it evolved. For
our purposes, the Cassini Orbiter Command and Data
Subsystem at JPL met all of our objectives. On the first
build of this system there were approximately 96K
source lines of code in approximately 750 program mod-
ules. On the last build there were approximately 110K
lines of source code in approximately 800 program maod-
ules. As the system progressed from the first to the last
build there were a total of 45,200 different versions of
these modules. On the average, then, each module pro-
gressed through an average of 60 evolutionary steps or
versions. For the purposes of this study, the Ada pro-
gram module is a procedure or function. it is the small-
est unit of the Ada language structure that may be meas-
ured. A number of modules present in the first build of
the system were removed on subsequent builds. Simi-
larly, anumber of modules were added.

The Cassini CDS does not represent an extraordi-
nary software system. It is quite typical of the amount of
change activity that will occur in the development of a
system on the order of 100 KLOC. It is a non-trivia
measurement problem to track the system as it evolves.
Again, there are two different sets of measurement ac-
tivities that must occur at once. We are interested the
changes in the source code and we are interested in the
fault reports that are being filed against each module.

2. AMEASUREMENT BASELINE

The measurement of an evolving software system
through the shifting sands of time is not an easy task.
Perhaps one of the most difficult issues relates to the
establishment of a baseline against which the evolving
systems may be compared. This problem is very similar
to that encountered by the surveying profession. If we
were to buy a piece of property, there are certain physi-
cal attributes that we would like to know about that
property. Among these properties is the topology of the
site. To establish the topological characteristics of the
land, we will have to seek out a benchmark. This
benchmark represents an arbitrary point somewhere on
the subject property. The distance and the elevation of
every other point on the property may then be estab-
lished in relation to the measurement baseline. Interest-
ingly enough, we can pick any point on the property,
establish a new baseline, and get exactly the same topol-
ogy for the property. The property does not change.
Only our perspective changes.

When measuring software evolution, we need to
establish a measurement baseline for this same purpose
[Niko97, Muns96a]. We need a fixed point against
which all others can be compared. Our measurement
baseline also needs to maintain the property that, when

another point is chosen, the exact same picture of soft-
ware evolution emerges, only the perspective changes.
The individua points involved in measuring software
evolution are individual builds of the system.

For each raw metric in the baseline build, we may
compute a mean and a standard deviation. Denote the
vector of mean values for the basdline build as X® and

the vector of standard deviations as s®. The standard-
ized baseline metric values for any module j in an arbi-
trary build i, then, may be derived from raw metric val-
ues as

Standardizing the raw metrics makes them more
tractable. It now permits the comparison of metric val-
ues from one build to the next. From a software engi-
neering perspective, there are smply too many metrics
collected on each module over many builds. We need to
reduce the dimensionality of the problem. We have suc-
cessfully used principal components analysis for reduc-
ing the dimensionality of the problem [Muns90a,
Khos92]. The principal components technique will
reduce a set of highly correlated metrics to a much
smaller set of uncorrelated or orthogonal measures. One
of the products of the principal components technique is
an orthogonal transformation matrix T that will send the
standardized scores (the matrix z) onto a reduced set of
domain scoresthusly, d =zT .

In the same manner as the baseline means and stan-
dard deviations were used to transform the raw metric of
any build relative to a baseline build, the transformation
matrix T® derived from the baseline build will be used
in subsequent builds to transform standardized metric
values obtained from that build to the reduced set of do-
main metrics as follows: d®' =z®'T®, where z*' are
the standardized metric values from build i baselined on
build B.

Another artifact of the principal components analy-
sisisthe set of eigenvalues that are generated for each of
the new principal components. Associated with each of
the new measurement domains is an eigenvaue, | .
These eigenvalues are large or small varying directly
with the proportion of variance explained by each prin-
cipal component. We have successfully exploited these
eigenvalues to create the fault index, r , that is the

weighted sum of the domain metrics to wit:
r, =50+10§_ | ,d, , where mis the dimensionality of
j=1

the reduced metric set [Muns90a).

As was the case for the standardized metrics and the
domain metrics, the fault index may be baselined as well,
using the eigenvalues and the baselined domain values:

g
B — BB
r _aljdj
j=1

If the raw metrics that are used to construct the fault
index are carefully chosen for their relationship to soft-
ware faults then the fault index will vary in exactly the
same manner as the faults [Muns95]. The fault index is
a very reliable fault surrogate. Whereas we cannot
measure the faults in a program directly we can measure
the fault index of the program modules that contain the
faults. Those modules having a large fault index will
ultimately be found to be those with the largest number
of faults [Muns92].

3. SOFTWARE EVOLUTION

A software system consists of one or more software
modules. As the system grows and modifications are
made, the code is recompiled and a new version, or
build, is created. Each build is constructed from a set of
software modules. The new version may contain some
of the same modules as the previous version, some en-
tirely new modules and it may even omit some modules
that were present in an earlier version. Of the modules
that are common to both the old and new version, some
may have undergone modification since the last build.
When evaluating the change that occurs to the system
between any two builds (software evolution), we are
interested in three sets of modules. Thefirst set, M, is

the set of modules present in both builds of the system.
These modules may have changed since the earlier ver-
sion but were not removed. The second set, M, , is the
set of modules that were in the early build and were re-
moved prior to the later build. Thefinal set, M, isthe

set of modules that have been added to the system since
the earlier build.

The fault index of the system R' a build i, the early
build, is given by

Similarly, the fault index of the system R’ at build j, the
later build is given by
R=3r!+3r/).
d M, bl M,
The later system build is said to be more fault prone if
R >R.

As a system evolves through a series of builds, its
fault burden will change. This burden may be estimated
by a set of software metrics. One simple assessment of
the size of a software system is the number of lines of
code per module. However, using only one metric may
neglect information about the other complexity attributes
of the system, such as control flow and temporal com-

plexity. By comparing successive builds on their domain
metrics it is possible to see how these builds either in-
crease or decrease based on particular attribute domains.
Using the fault index, the overall system fault burden can
be monitored as the system evolves.

Regardless of which metric is chosen, the goal is the
same. We wish to assess how the system has changed,
over time, with respect to that particular measurement.
The concept of a code delta provides thisinformation. A
code delta is, as the name implies, the difference be-
tween two builds as to the relative complexity metric.

The change in the fault in a single module between
two builds may be measured in one of two distinct ways.
First, we may simply compute the simple difference in
the module fault index between build i and build j. We
have called this value the fault delta for the module m, or
di=r!-r!. Alimitaion of measuring fault deltasis
that it doesn’'t give an indicator as to how much change
the system has undergone. If, between builds, several
software modules are removed and are replaced by mod-
ules of roughly equivalent complexity, the fault delta for
the system will be close to zero. The overall complexity
of the system, based on the metric used to compute del-
tas, will not have changed much. However, the reliabil-
ity of the system could have been severely affected by
the replacing old modules with new ones. What we need
is a measure to accompany fault delta that indicates how
much change has occurred.

The absolute value of the fault delta is a measure of
code churn. In the case of code churn, what is important
is the absolute measure of the nature that code has been
modified. From the standpoint of fault insertion, re-
moving a lot of code is probably as catastrophic as add-
ing a bunch. The new measure of net fault change
(NFC), C , for module mis simply

cll ==l - v

The total change of the system is the sum of the
fault delta's for a system between two builds i and j is
given by
di'-@rivar)

al M, bl M,
Similarly, the NFC of the same system over the same
buildsis
NU=8 cliv 8 ried).
cl M, al M, bl M,

With a suitable baseline in place, and the module
sets defined above, it is now possible to measure soft-
ware evolution across a full spectrum of software met-
rics. We can do this first by comparing average metric
values for the different builds. Secondly, we can meas-
ure the increase or decrease in system complexity as
measured by a selected metric, fault delta, or we can

measure the total amount of change the system has un-
dergone between builds, net fault change.

4. OBTAINING AVERAGE BUILD
VALUES

One synthetic software measure, fault index, has
clearly been established as a successful surrogate meas-
ure of software faults [Muns90g]. It seems only reason-
able that we should use it as the measure against which
we compare different builds. Since the fault index is a
composite measure based on the raw measurements, it
incorporates the information represented by LOC, V(g),
h,, h,, and al the other raw metrics of interest. The

fault index is a single value that is representative of the
complexity of the system which incorporates all of the
software attributes we have measured (e.g. size, control
flow, style, data structures, etc.).

By definition, the average fault index, r, of the

baseline system will be

_ 14

re= r? =50,

Nea

where N® is the cardi nality of the set of modules on
build B, the baseline build. The fault index for the base-
line build is calculated from standardized values using
the mean and standard deviation from the baseline met-
rics. The fault indices are then scaled to have a mean of
50 and a standard deviation of 10. For that reason, the
average fault index for the baseline system will aways
be a fixed point. Subsequent builds are standardized
using the means and standard deviations of the metrics
gathered from the baseline system to allow comparisons.
The average fault index for subsequent buildsis given by
1 g. r B.k
where N* is the cardinality of the set of program mod-
ules in the k™ build and r *“ is the baselined fault in-

dex for the i" module of that set.

As the code is modified over time, faults will be
found and fixed. However, new faults will be introduced
into the code as a result of the change. In fact, this fault
introduction process is directly proportional to change in
the program modules from one version to the next. Asa
module is changed from one build to the next in response
to evolving requirements changes and fault reports, its
measurable software attributes will also change. Gener-
aly, the net effect of a change is that complexity will
increase. Only rarely will its complexity decrease.

—k -

5. DEFINITION OF A FAULT

Unfortunately there is no particular definition of
precisely what a software fault is. This makes it difficult

to develop meaningful associative models between faults
and metrics. In calibrating our model, we would like to
know how to count faults in an accurate and repeatable
manner. In measuring the evolution of the system to talk
about rates of fault introduction and removal, we meas-
ure in units to the way that the system changes over time.
Changes to the system are visible at the module level,
and we attempt to measure at that level of granularity.
Since the measurements of system structure are collected
at the module level (by module we mean procedures and
functions), we would like information about faults at the
same granularity. We would aso like to know if there
are quantities that are related to fault counts that can be
used to make our calibration task easier.

Following the second definition of fault in [IEEE83,
IEEE88], we consider a fault to be a structural imper -
fection in a software system that may lead to the sys-
tem’s eventually failing. In other words, it is a physical
characteristic of the system of which the type and ex-
tent may be measured using the same ideas used to
measure the properties of more traditional physical sys-
tems. Faults are introduced into a system by people
making errors in their tasks - these errors may be errors
of commission or errors of omission. In order to count
faults, we needed to develop a method of identification
that is repeatable, consistent, and identifies faults at the
same level of granularity as our structural measurements.
Faults may be local — for instance, a system might con-
tain an implementation fault affecting only one module
in which the programmer incorrectly initializes a vari-
able local to the routine. Faults may also span multiple
modules - for instance, each module containing an in-
clude file with a particular fault would have that fault. In
identifying and counting faults, we must deal with both
types of faults. Details of the fault counting and identifi-
cation rules developed for this study are given in
[Niko97a, Niko98]

In analyzing the flight software for the CASSINI
project the fault data and the source code change data
were available from two different systems. The problem
reporting information was obtained from the JPL institu-
tional problem reporting system. Failures were recorded
in this system starting at subsystem-level integration, and
continuing through spacecraft integration and test. Fail-
ure reports typically contain descriptions of the failure at
varying levels of detail, as well as descriptions of what
was done to correct the fault(s) that caused the failure.
Detailed information regarding the underlying faults
(e.g., where were the code changes made in each af-
fected module) is generally unavailable from the prob-
lem reporting system.

The entire source code evolution history could be
obtained directly from the Software Configuration Con-
trol System (SCCS) files for al versions of the flight
software. The way in which SCCS was used in this de-
velopment effort makes it possible to track changes to

the system at a module level in that each SCCS file
stores the baseline version of that file (which may con-
tain one or more modules) as well as the changes re-
quired to produce each subsequent increment (SCCS
delta) of that filee When a module was created, or
changed in response to a failure report or engineering
change request, the file in which the module is contained
was checked into SCCS as a new delta. This allowed us
to track changes to the system at the module level as it
evolved over time. For approximately 10% of the failure
reports, we were able to identify the source file incre-
ment in which the fault(s) associated with a particular
failure report were repaired. Thisinformation was avail-
able either in the comments inserted by the developer
into the SCCS file as part of the check-in process, or as
part of the set of comments at the beginning of a module
that track its development history.

Using the information described above, we per-
formed the following steps to identify faults. First, for
each problem report, we searched all of the SCCS files
to identify all modules and the increment(s) of each
module for which the software was changed in response
to the prablem report. Second, for each increment of
each module identified in the previous step, we assumed
as a starting point that all differences between the incre-
ment in which repairs are implemented and the previous
increment are due solely to fault repair. Note that thisis
not necessarily a valid assumption - developers may be
making functional enhancements to the system in the
same increment that fault repairs are being made. Care-
ful analysis of failure reports for which there was suffi-
ciently detailed descriptive information served to sepa
rate areas of fault repair from other changes. However,
the level of detail required to perform this analysis was
not consistently available. Third, we used a differential
comparator (e.g., Unix di f f) to obtain the differences
between the increment(s) in which the fault(s) were re-
paired, and the immediately preceding increment(s).
The results indicated the areas to be searched for faults.

After completing the last step, we still had to iden-
tify and count the faults - the results of the differential
comparison cannot simply be counted up to give a total
number of faults. In order to do this, we developed a
taxonomy for identifying and counting faults [Niko98].
This taxonomy differs from others in that it does not
seek to identify the root cause of the fault. Rather, it is
based on the types of changes made to the software to
repair the faults associated with failure reports - in other
words, it constitutes an operational definition of a fault.
Although identifying the root causes of faults is impor-
tant in improving the development process [Chil92,
IEEEQ3], it isfirst necessary to identify the faults. We do
not claim that this is the only way to identify and count
faults, nor do we claim that this taxonomy is complete.
However, we found that this taxonomy alowed us to
successfully identify faults in the software used in the

study in a consistent manner at the appropriate level of
granularity.

6. THE RELATIONSHIP BETWEEN
FAULTSAND CODE CHANGES

Having established a theoretical relationship be-
tween software faults and code changes, it is now of in-
terest to validate this model empirically. This measure-
ment occurred on two simultaneous fronts. First, all of
the versions of al of the source code modules were
measured. From these measurements, NFC and fault
deltas were obtained for every version of every module.
The failure reports were sampled to lead to specific
faults in the code. These faults were classified accord-
ing to the above taxonomy manually on a case by case
basis. Then we were able to build a regression model
relating the code measures to the code faults.

The Ada source code modules for all versions of
each of these modules were systematically reconstructed
from the SCCS code deltas. Each of these module ver-
sions was then measured by the UX-Metric analysis tool
for Ada[SETL93]. Not all metrics provided by this tool
were used in this study. Only a subset of these actually
provide distinct sources of variation [Khos90]. The spe-
cific metrics used in this study are shown in Table 1.

Metrics Definition
h) Count of unique operators [Hal 77]
h R Count of unique operands
N1 Count of total operators
N R Count of total operands
PIR . o N
Purity ratio: ratio of Halstead’'s N to total program
vocabulary
V(g) McCabe's cyclomatic complexity
Depth Maximum nesting level of program blocks
AveDepth | Average nesting level of program blocks
LOC Number of lines of code
Blk Number of blank lines
Cmt Count of comments
CmtWds [Tota words used in all comments
Stmts Count of executable statements
LSS Number of logical source statements
PSS Number of physical source statements
NonEx Number of non-executabl e statements
AveSpan | Average number of lines of code between references
to each variable
VI Average variable name length

Tablel. Software Metric Definitions

To establish a baseline system, all of the metric data
for the module versions that were members of the first
build of CDS were then analyzed by our PCA-FI tool.
Thistool is designed to compute fault indices either from
a basdline system or from a system being compared to

the baseline system. In that the first build of the Cassini
CDS system was selected to be the baseline system, the
PCA-FI tool performed a principal components analysis
on these data with an orthogonal varimax rotation. The
objective of this phase of the analysis is to use the prin-
cipal components technique to reduce the dimensionality
of the metric set. Asmay been seen in Table 2, there are
four principal components for the 18 metrics shown in
Table 1. For convenience, we have chosen to name
these principal components as Size, Structure, Style and
Nesting. From the last row in Table 2 we can see that
the new reduced set of orthogonal components of the
original 18 metrics account for approximately 85% of
the variation in the original metric set.

Metric Size Structure Style Nesting
Stmts 0.968 0.022 -0.079 0.021
LSS 0.961 0.025 -0.080 0.004
N, 0.926 0.016 0.086 0.086
N, 0.934 0.016 0.074 0.077
h " 0.884 0.012 -0.244 0.043
AveSpan 0.852 0.032 0.031 -0.082
V(9) 0.843 0.032 -0.094 -0.114
h . 0.635 -0.055 -0.522 -0.136
Depth 0.617 -0.022 -0.337 -0.379
LOC -0.027 0.979 0.136 0.015
Cmt -0.046 0.970 0.108 0.004
PSS -0.043 0.961 0.149 0.019
CmtWds 0.033 0.931 0.058 -0.010
NonEx -0.053 0.928 0.076 -0.009
Blk 0.263 0.898 0.048 0.005
PIR -0.148 -0.198 -0.878 0.052
VI 0.372 -0.232 -0.752 0.010
AveDepth -0.000 -0.009 0.041 -0.938
% Variance 37.956 30.315 10.454 6.009

Table 2. Principal Components of Software Metrics

Asistypica in the principal components analysis of
metric data, the Size domain dominates the analysis. It
alone accounts for approximately 38% of the total varia
tion in the original metric set. Not surprisingly, this do-
main contains the metrics of total statement count
(Smts), logical source statements (LSS), the Halstead
lexical metric primitives of operator and operand count,
but it also contains cyclomatic complexity (V(g)). In that
we regularly find cyclomatic complexity in this domain
we are forced to conclude that it is only a smple meas-
ure of size in the same manner as statement count. The
Structure domain contain those metrics relating to the
physical structure of the program such as non-executable
statements (NonEx) and the program block count (BIK).
The Style domain contains measures of attribute that are
directly under a programmer’s control such as variable
length (V1) and purity ratio (P/R). The Nesting domain
consist of the single metric that is a measure of the aver-
age depth of nesting of program modules (AveDepth).

In order to transform the raw metrics for each mod-
ule version into their corresponding fault indices, the
means and the standard deviations must be computed.
These values will be used to transform all raw metric
values for al versions of all modules to their baselined z
score values. The transformation matrix will then map
the metric z score values onto their orthogona equiva-
lents to obtain the orthogonal domain metric values used
in the computation of the fault index. With this
information, we can obtain baselined fault index values
for any version of any module relative to the basdline
build. As an aside, it is not necessary that the baseline
build be the initial build. Asatypica system progresses
through hundreds of builds in the course of its life, it is
worth reestablishing a baseline closer to the current sys-
tem. In any event, these baseline data are saved by the
PCA-FI tool for use in later computation of metric val-
ues. Whenever the tool is invoked referencing the base-
line data it will automatically use these data to transform
the raw metric values given to it.

Once the baselined fault index data have been as-
sembled for al versions of al modules, it is then possi-
ble to examine some trends that have occurred during the
evolution of the system. For example, in Figure 1 the
fault index of the evolving CDS system is shown across
one of its five major builds. To compute these changing
fault index values, every development increment within
that build was identified. Then, for each increment, the
baselined fault indices of the modules in that increment
were computed. The next four increments, not shown
here, have evolutionary patterns similar to that shown in
Figure 1. It seems to be that the average fault index of
most systems is a monaotonically increasing function.

1400.00 I ‘
120000 +— Cumulative "-‘5_'
NFC hy
1000.00 1—]
800.00 ' =
600.00 -~
e i
400.00 1—* Cumulative |—
r fault delta
200.00 +&]
e
0.00 e aan
iond 150 200 250 300
-200.00

Figure 1. Changein the Fault Index for OneVersion
of CDS Flight Software

Note in Figure 1 that not all increments within a
build represent the same increase in the fault index.
Nearly one third of the total change in this version takes
place within the first 10% of the development incre-
ments. From our understanding of the relationship be-
tween the fault index and injected faults, we would ex-
pect that the magnitude of change within the first 30 in-
crements would indicate that a large number of faults

would have been injected as aresult of this activity. Itis
also interesting to note that the final fault index of this
particular version is rather close to the initial fault index,
although it is quite clear from the measured activity that
a significant amount of change has occurred.

Not al program modules received the same degree
of modification as the system evolved. Some modules
changed relatively little. Figure 2 shows the net fault
change and fault delta values for a module that was rela
tively stable over its change history. There were only
four relatively minor changes to this module. A more
typical change history is shown for another module in
Figure 3. The total net fault change for this module is
approximately 38. It is interesting to note that the fault
delta for this module is close to zero. The fault index of
the module at the last version is very close to its origina
value. This figure clearly illustrates the conceptual dif-
ferences between the two measure of net fault change
and fault delta.

2.00

1.80
1.60 +— ;

1a0)| CurEL:I: 'a:nve —

1.20 +— /

1.00 l Cumulative
0.80 fault delta
0.60 ’

0.40 = T

020 L I]
0,00 v —

N A e D 2> ©
2 S oY SV O PN VD QAN ANV AT
RO o7 oY » @ o LAY a¥ (|

Figure2. ChangeHistory for Stable Module

45.00
000 Cumulative 1
500 NCF f
30.00
2500 = —
2000 — Cumulative
1500 — fault delta
10.00 t

‘ I i
5.00 /—”\ / ~
0.00 T

O A ok O D D D @A D DD
N o7 > P F R &P P
& oV ¥ P eV o e" 0 p° o T

Figure 3. Typical Module Change History

Figure 4 shows a module a the extreme end of
change history. This module has atotal net fault change
value of close to 140. Also, its fina fault delta value is
about 30, indicating that its fault index has also increased
significantly as it evolved. Among the three modules
whose change history is illustrated by Figures 2, 3, and
4, the latter module is the one that we focus our attention
on the most. It isthe one most likely to have had signifi-
cant numbers of faults introduced into it throughout its
dramatic life.

Now let us turn our attention to the fault identifica-
tion process. Over 600 failure reports were written

against the CDS flight software during developmental
testing and system integration. Failure reports contain a
description of how the system’s behavior deviated from
expectations, the date on which the failure was observed,
and a description of the corrective action that was taken.

In relating the number of faults inserted in an incre-
ment to measures of a module€’s structural change, we
had only a small number of observations with which to
work. There were three difficulties that had to be dealt
with. First, recall that for only about 10% of the failure
reports were we able to identify the module(s) that had
been changed, and in which increment those changes
were made. Although the development practices used on
this project included the placement of comments in the
source code to identify repair activities resulting from
each problem report, this requirement was not consis-
tently enforced. Second, once a fault had been identi-
fied, it was necessary to trace it back to the increment in
which it first occurred. For some source files, there were
over 100 increments that had to be manually searched.
Since the SCCS files for each delivered version were
available, it was possible to trace most faults back to
their point of origin. As previously noted, the principal
difficulty was the sheer volume of material that had to be
examined — this was one of the factors restricting the
number of observations that could be obtained. Third,
there were numerous instances in which the UX-Metric
analyzer that was used to obtain the raw structural meas-
urements would not measure a particular module. The
net result was that of the over 100 faults that were ini-
tially identified, there were only 35 observations in
which a fault could be associated with a particular in-
crement of a module, and with that increment’ s measures
of fault deltaand net fault change.

160.00

14000 11 cumulative]

120.00 NCE

100.00 /_/J

80.00 Cumulative |

000 F}Fﬁ faltdeta ||

40.00 {_\ _/_/_/,_/_—

20.00 I \ I

Q.00 T T AT

PR PR R P DAV

Lo o M e e &

Figure 4. Change History for Frequently Changed
Module

For each of the 35 modules for which there was vi-
able fault data, there were three data points. First, we
had the number of injected faults for that module that
were the direct result of changes that had occurred on
that module between the current version that contained
the faults and the previous version that did not. Second,
we had fault delta values for each of these modules from

the current to the previous version. Finally, we had net
fault change values derived from the fault deltas.

Linear regression models were computed for net
fault change and fault deltas with actual code faults as
the dependent variable in both cases. Both models were
build without constant termsin that we surmise that if no
changes were made to a module, then no new faults
could be introduced. The results of the regression be-
tween faults and fault deltas were not at all surprising.
The squared multiple R for this model was 0.001, about
as close to zero as you can get. This result is directly
attributable to the non-linearity of the data. Change
comes in two flavors. Change may increase the com-
plexity of a module. Change may decrease the com-
plexity of a model. Faults, on the other hand are not
related to the direction of the change but to its intensity.
Removing masses of code from amoduleisjust as likely
to introduce faults and adding code to it.

The regression model between net fault change and
faults is dramatically different. The regression ANOVA
for this model are shown in Table 3. Whereas fault del-
tas do not show a linear relationship with faults, net fault
change certainly does. The actual regression model is
given in Table 4. In Table 5 the regressions statistics
have been reported. Of particular interest is the Squared
Multiple R term, having a value of 0.653. This means,
roughly, that the regression model will account for more
than 65% of the variation in the faults of the observed
modul es based on the values of net fault change.

Standard error of
estimate

Squared multiple
N MultipleR R

35 .848 719 2.087

Source Sum-of- DF M ean- F-Ratio P
Squares Square
Regression 331.879 1 331.879 62.996 0.000
Residual 179.121 34 10.673 5.268

Table 3. Regression Analysisof Variance

Effect Coefficient Std Err t P(2-Tail)
NFC 0.576 0.073 7.937 0.000
Table 4. Regression Model

Squared multiple Standard error of
N MultipleR R estimate
35 0.806 0.649 2.296

Table5. Regression Statistics

Of coursg, it may be the case that both the amount
of change and the direction in which the change oc-
curred. The linear regression through the origin shown

Table 8. Regression Statistics

We see that the model incorporating fault delta as well as
net fault change performs significantly better than the
model incorporating net fault change alone, as measured
by Squared Multiple R and Mean Sum of Squares.

We determined whether the linear regression model
which uses net fault change alone is an adequate predic-
tor at a particular significance level when compared to
the model using both net fault change and fault delta. We
used the R%-adequate test [MacD97, Net83] to examine
the linear regression models through the origin and de-
termine whether the models that depend only on struc-
tural measures are an adequate predictor. A subset of
predictor variables is said to be R*-adequate at signifi-
cance level a if:

Riub >1- (1' szull)(1+ dn,k) ’ where

R’ is the R* value achieved with the subset of
predictors
R isthe R? value achieved with the full set of
predictors
dn,k = (ka,n_k_l)/n-k-l, where
k = number of predictor variables in the
model
n = number of observations
F = F statistic for significance a for n,k de-
grees of freedom.
Table 9 below show values of R?, k, degrees of freedom,
Fu nk-1, Onk, and R%y, for al four linear regression models
through the origin. The number of observations, n, is 35,
and we specify avalue of a=.05.
We see in Table 9 that the value of Multiple Squared
R for the regression using only net fault change is 0.649,
and the 5% significance threshold for the net fault
change and fault delta regression model is 0.661. This
means that the regression model using only NFC is not
R? adequate when compared to the model using both net
fault change and fault delta as predictors. The amount of
change occurring between subsequent revisions and the
direction of that change both appear to be important in
determining the number of faultsinserted into a system.

R 2
in Tables 6, 7, and 8 below illustrates this mode. HIn Segres | RO | DR K] Fafor | dndo | TReSY
Through cance a signifi-
Source Sum-of- | DF M ean- F-Ratio P Origin cancea
Squares Square NFConly |0649] 34 [1| 4139 [0125 | ——
Regresson | 367.247 | 2 | 183623 | 42.153 | 0.000 NFC, Fault |0.719] 33 | 2| 3295 | 0.206 | 0.661
Residual 143753 | 33 | 4.356 Delta
Table 6. Regression Analysisof Variance Table 9. Valuesof R?, DOF, k, Fy n.i.1, and dp for R
Effect Coefficient Std Err t P(2-Tail) adequate Test
NFC 0.647 0.071 9.172 0.000 Finally, we examined the predicted residuals for the
Delta 0201 0.071 2.849 0.002 linear regression models described above. Table 10 be-

Table 7. Regression Model

low shows the results of the Wilcoxon Signed Ranks
test, as applied to the predictions for the excluded obser-
vations and the number of faults observed for each of the
two linear regression models through the origin. For
these models, about 2/3 of the estimates tend to be less
than the number of faults observed.

Plots of the predicted residuals against the actual
number of observed faults for each of the linear regres-
sion models through the origin are shown in Figures 5
and 6 below. The results of the Wilcoxon signed ranks
tests, as well as Figures 5 and 6, indicate that the predic-
tive accuracy of the regression models might be im-
proved if syntactic analyzers capable of measuring addi-
tional aspects of a software system’s structure were
available. Recall, for instance, that we did not measure
any of the real-time aspects of the system. Analyzers
capable of measuring changes in variable definition and
usage as well changes to the sequencing of blocks might
also provide more accurate measurements.

Sample N Mean Sum Test Asymp-
Pair Rank of Statis- totic
Ranks tic Signifi-
VA cance
(2-tailed)
Observed Neg. 258 | 17.52 | 438.00 | -2.015° .044
Faults; Pos. | 10° | 19.20 | 192.00
NFConly | Ties 0°
fault est. Total 35
Observed Neg. 243 | 16.92 | 406.00 | -1.491° .136
Faults; Pos. | 11° | 20.36 | 224.00
NFC and | Ties 0°
Fault Total 35
Delta est.

a Observed Faults > Regression model predictions
b. Observed Faults < Regression model predictions
c. Observed Faults = Regression model predictions
d. Based on positive ranks

Table 10. Wilcoxon Signed Ranks Test for Linear
Regressions Through the Origin

Predicted Residuals vs. Observed Faults

Faults = b1*NFC

Predicted Residuals

olmo | @

0 2 4 6 8 10 12
Number of observed faults - versions 2.0, 2.1a, and 2.1b

Figure5. Predicted Residualsvs. Number of Ob-
served Faultsfor Linear Regression Using NFC

Predicted Residuals vs. Observed Faults

Faults = b1*NFC + b2*Fault Delta

Predicted Residuals
-

4 10 12

Number of observed faults - versions 2.0, 2.1a, and 2.1b

Figure 6. Predicted Residualsvs. Number of Ob-
served Faultsfor Linear Regression with NFC and
Fault Delta

7. SUMMARY

There is adistinct and a strong relationship between
software faults and measurable software attributes. This
is in itself not a new result or observation. The most
interesting result of this endeavor is that we also found a
strong association between the fault introduction process
over the evolutionary history of a software system and
the degree of change taking place in each of the program
modules. We also found that the direction of the change
was significant in determining the number of faults in-
serted. Some changes will have the potential of intro-
ducing very few faults while others may have a serious
impact on the number of latent faults. Different numbers
of faults may be inserted, depending upon whether code
is being added to or removed from the system.

In order for the measurement process to be meaning-
ful, fault data must be very carefully collected. In this
study, the data were extracted ex post facto as a very
labor intensive effort. Since fault data cannot be col-
lected with the same degree of automation as much of
the data on software metrics being gathered by develop-
ment organizations, material changes in the software
development and software maintenance processes must
be made to capture these fault data. Among other things,
awell defined fault standard and fault taxonomy must be
developed and maintained as part of the software devel-
opment process. Further, all designers and coders should
be trained in its use. A viable standard is one that may
be used to classify any fault unambiguoudly. A viable
fault recording process is one in which any one person
will classify afault exactly the same as any other person.

Finally, the whole notion of measuring the fault in-
troduction process is its ultimate value as a measure of
software process. The software engineering literature is
replete with examples of how software process im-
provement can be achieved through the use of some new
software development technique. What is aimost absent
from the same literature is a controlled study to validate

the fact that the new process is meaningful. The tech-
niques developed in this study can be implemented in a
development organization to provide a consistent method
of measuring fault content and structural evolution
across multiple projects over time. We are working with
software development efforts at JPL to address the prac-
tical aspects of inserting these measurement techniques
into production software development environments.
Theinitial estimates of fault insertion rates can serve asa
baseline against which future projects can be compared
to determine whether progress is being made in reducing
the fault insertion rate, and to identify those devel opment
techniques that seem to provide the greatest reduction.

ACKNOWLEDGMENTS

The research described in this paper was carried out
by the Jet Propulsion Laboratory, California Institute of
Technology, under a contract with the National Aero-
nautics and Space Administration.

REFERENCES

[Chil92] R. Chillarege, 1. Bhandari, J. Chaar, M. Halliday,
D. Moebus, B. Ray, M.-Y. Wong, “Orthogona Defect
Classification - A Concept for In-Process Measurement”, |EEE
Transactions on Software Engineering, November, 1992, pp.
943-946.

[Hal77] M. H. Halstead, Elements of Software Science.
Elsevier, New York, 1977.

[I[EEE83] “IEEE Standard Glossary of Software Engineering
Terminology”, IEEE Std 729-1983, Institute of Electrical and
Electronics Engineers, 1983.

[|[EEE88] “IEEE Standard Dictionary of Measures to
Produce Reliable Software”, IEEE Std 982.1-1988, Institute of
Electrical and Electronics Engineers, 1989.

[I[EEE93] “IEEE Standard Classification for Software
Anomalies’, |IEEE Std 1044-1993, Institute of Electrical and
Electronics Engineers, 1994

[Khos90] T. M. Khoshgoftaar and J. C. Munson , "Pre-
dicting Software Development Errors Using Complexity Met-
rics,” |IEEE Journal on Selected Areas in Communications 8,
1990, pp. 253-261.

[Khos92] T. M. Khoshgoftaar and J. C. Munson "A
Measure of Software System Complexity and Its Relationship
to Faults," In Proceedings of the 1992 International Smulation
Technology Conference, The Society for Computer Simulation,
San Diego, CA, 1992, pp. 267-272.

[MacD97] S. G. MacDonell, M. J. Shepperd, P. J. Sdlis,
“Metrics for Database Systems. An Empiricad Study”,
Proceedings of the Fourth International Software Metrics
Symposium, November 5-7, 1997, Albuquerque, NM, pp. 99-
107

[Muns90] J.C. Munson and T. M. Khoshgoftaar “Regres-
sion Moddling of Software Quality: An Empirical Investiga-
tion,” Journal of Information and Software Technology, 32,
1990, pp. 105-114.

[Muns90a] J. C. Munson and T. M. Khoshgoftaar "The
Relative Software Complexity Metric: A Validation Study," In
Proceedings of the Software Engineering 1990 Conference,
Cambridge University Press, Cambridge, UK, 1990, pp. 89-
102.

[Muns92] J. C. Munson and T. M. Khoshgoftaar "The De-
tection of Fault-Prone Programs,” |EEE Transactions on Soft-
ware Engineering, SE-18, No. 5, 1992, pp. 423-433.

[Muns95] J. C. Munson, "Software Measurement: Problems
and Practice,” Annals of Software Engineering, J. C. Baltzer
AG, Amsterdam 1995.

[Muns96] J. C. Munson, “ Software Faults, Software Failures,
and Software Reliability Modeling”, Information and Software
Technology, December, 1996.

[Muns96a] J. C. Munson and D. S. Werries, “Measuring
Software Evolution,” Proceedings of the 1996 |EEE Interna-
tional Software Metrics Symposium, |EEE Computer Society
Press, pp. 41-51.

[Muns97] J. C. Munson and G. A. Hall, “Estimating Test
Effectiveness with Dynamic Complexity Measurement,” Em-
pirical Software Engineering Journal. Feb. 1997.

[Net83] J. Neter, W. Wasserman, M. H. Kutner, Applied
Linear Regression Models, Irwin: Homewood, IL, 1983
[Niko97] A. P. Nikora, N. F. Schneidewind, J. C. Munson,
“IV&V Issues in Achieving High Reliability and Safety in
Critical Control System Software”, proceedings of the Interna-
tional Society of Science and Applied Technology conference,
March 10-12, 1997, Anaheim, CA, pp 25-30.

[Niko97a] A. P. Nikora, J. C. Munson, “Finding Fault with
Faults: A Case Study”, proceedings of the Annual Oregon
Workshop on Software Metrics, Coeur d Alene, ID, May 11-
13, 1997

[Niko98] A. P. Nikora, “Software System Defect Content
Prediction From Deveopment Process And Product
Characteristics’, Doctoral Dissertation, Department of
Computer Science, University of Southern California, May,
1998.

[SETL93] “User's Guide for UX-Metric 4.0 for Ada’, SET
Laboratories, Mulino, OR, O SET Laboratories, 1987-1993

INTEGRATING FORMAL METHODS
INTO SOFTWARE DEPENDABILITY ANALYSIS
John C. Knight Luis G. Nakano
(knight | nakano) @virginia.edu
Department of Computer Science

University of Virginia
Charlottesville, VA 22903-2442, USA

An abstract submitted to:

The Twenty-Third Goddard Software Engineering Laboratory Workshop

Contact author:
John C. Knight

Department of Computer Science
University of Virginia
Thornton Hall
Charlottesville, VA 22903-2442, USA

knight@virginia.edu
+1 804 982 2216 (Voice)
+1 804 982 2214 (FAX)

INTEGRATING FORMAL METHODSINTO SOFTWARE
DEPENDABILITY ANALYSIS

John C. Knight Luis G. Nakano
Department of Computer Science Department of Computer Science
University of Virginia University of Virginia

1. Introduction

Formal methods are techniques based in mathematics that facilitate the precise specification and
verification of software systems. Their use has been demonstrated in a number of experiments
and industrial development projects [3]. Despite these demonstrations, formal techniques remain
the exception rather than the rule in system development. One of the issues raised about the use
of forma methods is the lack of any means whereby their results can be used in the broader
context of system dependability analysis, i.e., the analysis of a complete system including
hardware and software. For example, what would be the benefit at the system level of the use of a
formal specification in the preparation of the system software?

The issues that we address in the work summarized here are:

For what parts of a complex software system should formal methods be used?

How can the results of formal analysis be used in the overall dependability analysis of the
entire system?
We summarize a process by which these issues are addressed, and show thereby how to
determine the role of forma methods in any particular development and how to exploit the
results of formal analysis in system dependability analysis. At the workshop, we will illustrate
the process using examples from analysis performed on parts of the design of an experimental
nuclear-reactor control system.

2. Dependability Analysis

Analysis of the dependability of safety-critical systems is essential in order to provide estimates
of the expected losses (life and/or property) that such systems will cause per unit of operating
time, i.e., their risks. These risk estimates are used by developers, users, policy makers and
others to make informed decisions about deploying safety-critical systems based on the expected
benefits and losses to society.

Risk analysis has not been applied as successfully to software-based safety-critical systems as it
has to hardware-only systems. The reason is the discrete nature of software—it causes
complexity not usually found in analog hardware and prevents interpolation of test results
commonly applied to hardware-only systems. The result is a situation in which the hardware
elements of a system are typically analyzed in depth but software is handled in only a very
limited way, often as a*“black box”.

Life testing is an approach to software dependability assessment in which the software is treated
as a black box. The software is executed continuously in its operating environment for a period
of time proportional to the duration of the mission and inversely proportional to the acceptable
probability of failure. Unfortunately, it has been shown [2] that life testing is not a feasible
approach to the dependability assessment of life-critical software because the duration of testing
required is excessive. To reduce the need for testing, reliability growth models have also been
tried [1]. By modeling the development of software in terms of testing and fault removal, it is
argued that an estimate for software reliability can be obtained with lower test requirements. If it
works at all, this approach only works for modest levels of dependability.

Formal methods are often advocated as an approach to developing dependable software. But
poor tool support, the complexity of the systems, and the difficulty of using the techniques have
limited the application of formal methods in many cases. The application of forma methods just
to the safety-critical parts of a system is a valid approach, but it requires that the safety-critical
parts be identified and delimited. No genera technique for isolating the safety-critical
components of systems is available, however. In addition, it is not clear how to determine the
properties of a system (or part of one) that are relevant to its safety. Again, no technique so far
has been widely accepted, and most applications of forma methods try to establish properties
chosen in a non-rigorous manner. Though clearly useful, this utility isinformal—such properties
do not contribute formally to the overal system dependability anaysis. In summary, though
formal methods are of value, it is not clear how they should be applied nor how to use the fact
that they have been applied in system dependability analysis.

Given this situation, an integrated approach that: (a) addresses both the software and hardware
elements of a system; and (b) exploits the tremendous potential of forma methods is needed. In
this paper, a comprehensive approach to system dependability analysis based on traditional
techniques for risk analysis is summarized. The approach models software as a set of interacting
components based on the structure of the software. By viewing software this way, software
analysis can be integrated fully into the models used presently for hardware. The resulting
composite models provide details of those conditions in which hazards might occur as a result of
erroneous software operation thereby identifying precisely where attention to software
dependability must be focused. As such, these conditions can be the target of formal analysis so
that confidence is gained about the right properties of the right parts of a software system.

3. A Component Model of Software Dependability

Both simple life testing and reliability growth models ignore the structure of software when
obtaining estimates of software failure rates thereby requiring either that impossibly large
numbers of tests be performed or that failures induced in one component by another be ignored.
Unfortunately, however, if one appeals to forma methods as an alternative approach, one is
faced with the fact that formal methods do not provide stochastic estimates and so cannot be used
easily in place of testing. And, as we have already noted, it is not possible to identify precisely
where or how such methods can be applied effectively to just parts of large systems.

Traditional dependability analysis techniques, such as fault-tree analysis and failure-modes-and-
effects analysis, are performed for hardware-only systems using complete knowledge of the
internal design. Typically, the software in software-based systems cannot be analyzed this way
because the interactions between components have either been ignored or not obtained

rigoroudly. Clearly, software components such as functions and tasks interact extensively, but
thisis not to be the case (or is assumed not to be the case) in archetypal hardware-only systems.

Since techniques that model software as a monolithic entity have not achieved sufficient fidelity,
we have developed an approach in which software is modeled as a graph with components as
nodes and interactions as edges. An event associated with the failure of a software component
then appears as a separate entity in the system fault tree. However, traditional quantitative
analysis cannot be undertaken without further analysis because of the component interactions.
Qualitative analysis, however, is possible and the comprehensive system fault tree allows those
parts of the software whose failure might lead to a hazard to be identified easily.

In our approach, interactions are determined based on a component-interaction model and then
minimized using architectural techniques. The resulting fault tree is then analyzed quantitatively
using extensions to fault tree analysis that include dependencies[5].

Of critical importance is the fact that the failures of individual software components now appear
in the system fault tree. This permits system design decisions to be taken to reduce
vulnerabilities, but, more importantly, it indicates what aspects of the software will benefit most
from the use of forma methods and how. For example, if a software component is deemed to be
critical because the fault tree shows that its failure would lead to a hazard with unacceptable
probability, then the component can be subjected to detailed formal analysis. If it can be shown
to be correct via proof, then its probability of failure can be assumed to be close to zero and
increased confidence gained in the system’ s safety. The role of formal methods is then clear.

4. Component Interaction Model

In developing an analysis-by-components approach to modeling software, the first step is to
determine how one software component can affect another. There are, of course, a multitude of
ways that this can occur, but there is no basis in either models of computation or programming
language semantics for performing a comprehensive analysis.

We chose to approach this problem by viewing component interaction as a hazard and basing
our analysis on a fault tree for this hazard. In this way, we have documented, albeit informally
but rigorously, al possible sources of software component interaction. The fault tree is quite
large and we cannot include it here in detail. The events in the fault tree are based on the
semantics of a typical procedural programming language, and the results apply to all common
implementation languages such as Fortran and C.

In order to reflect the syntactic structure of procedural languages accurately, we define the term
component to mean either (a) afunction in the sense of afunctionin C, (b) a class in the sense of
aclassin C++, or (c) a process in the sense of atask in Ada. We make no assumptions about
how components can provide services to each other (in a client/server model) or collaborate with
each other (in a concurrent model) or otherwise interact.

As an example of the interaction model, figure 1 shows the top of the component-interaction
fault tree. With no loss of generality, in this fault tree we consider only two components because
there can be no interaction between components if there is no pair-wise interaction. Since
information flow between A and B is symmetric, only one of the cases need be considered.

Hazard

Component
Interaction
Information flows Information flowsto A and B
fromAtoB from a common source

Data Transfer Data Transfer

O O

Figure 1: Fragment of component interaction fault tree

In the first level of the partial tree shown in figure 1, component interaction can be caused by
information flow from A to B or by a common source of information. Thus, these are the two
events shown. Note that component interaction does not necessarily mean intended
communication in any format. Rather, it includes both intended and non-intended interaction
between components. In addition, information flow does not mean just transfer of data. Flow of
control is aso information in the sense of the analysis that we wish to perform.

The complete interaction model derives sources of interaction in all semantic areas including
shared data, memory management (e.g., one task consuming all memory thereby causing others
to fail), task communications (e.g., priority inversion and deadlock), and exception generation
and propagation.

5. Design Techniquesfor Analyzability

If analysis using our software component model is to be complete, it is essential that interactions
between components that have to be analyzed always be detectable. Analysis of the component
interaction model indicates that several potential causes for unwanted interaction cannot be
discovered by static analysis of the system. Dynamic scheduling of functions and dynamic
resource alocation, for example, have the potential for leading to failure under circumstances
that are unpredictable. Similarly, other characteristics of software designs have the potentia for
increasing the complexity of the analysis or even making it infeasible.

Analytic feasibility requires that these sources of interaction be eliminated and this requires that
certain restrictions be imposed. Both imposing the restriction and showing that a system meets
them is best achieved by explicit use of design choices, for example:

All resources must be statically allocated.

All scheduling actions must be static.

Execution times of components must be bounded.
Inter-task communications must be synchronous.

Thislist, although not exhaustive, illustrates the properties that were derived from the component
interaction model. Provided the complete set of design restrictions is met, al interactions
between components of a software system can be analyzed. Achieving analytic feasibility of
complex software systems using architectural techniques such as these is not unique to the
approach we have developed. The SAFEBuUS architecture [4], for example, used in the Boeing
777 ar transport enforces several of these properties to facilitate the safety anaysis of the final
system.

6. Quantitative Analysis

The final step in the approach that we have developed is quantitative analysis of complete
systems including both hardware and software. The composite fault tree contains nodes
describing failure events of all system components and all interactions between components are
known. To complete the part of the quantitative analysis associated with the software nodes, we
have developed an extension to the cut-set technique employed with conventional fault trees. The
extension, termed hazard-causing sequences, involves enumerating all sequences of software
component failures that could cause a hazard and analyzing each such sequence to show that its
probability of occurrence is sufficiently small. If this analysis reveals a sequence whose
probability of occurrence is not sufficiently small, formal techniques (perhaps combined with
certain restricted forms of testing) can be applied to the sequence in order to either reduce the
probability to a sufficiently small value or to show how the system design can be modified to
make the associated sequence less critical.

7. Summary

In order to better model the dependability of complex software-based systems, we have
developed an approach that uses the design of the software (viewed as a set of interacting
components) as a basis for analysis. This approach permits the critical elements of the software
to be identified and subjected to analysis using formal techniques. The approach, therefore,
permits a clear determination to be made of the most appropriate application of formal methods
to a large system and permits the results of forma analysis to be included in comprehensive
system dependability analysis.

At the workshop we will describe the approach in detail, present the complete component
interaction model, discuss the analytic techniques used in analysis of the composite fault-tree
model, and illustrate the approach using analysis performed on parts of the design of an
experimental nuclear reactor control system.

References

1.

Brocklehurst, S.; Littlewood, B. Techniques for prediction analysis and recalibration.
Chapter 4. In: Lyu, M. R., (ed). Handbook of Softwar e Reliability Engineering. IEEE
Computer Society, Los Alamitos, CA, 1995.

But<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>